
智能AI视觉平台
文章平均质量分 83
Coovally AI模型快速验证
由来自清华大学及欧洲的人才团队共同成立的一个包含完整AI建模流程、AI项目管理及AI系统部署管理的机器视觉平台。
让机器视觉AI应用落地更便宜、更快速、更有效,赋能业务人员快速构建AI系统;赋能AI工程师提升AI系统构建效率。帮助企业低成本实现AI算法自由。
展开
-
智能辅助标注——数据标注领域新突破
目前跑码地Coovally已广泛应用于制造业质检、地质灾害监测、电力行业设备监控、医学专病诊断、智慧交通、智慧园区等多样场景。“得数据者,得人工智能”,有了智能辅助标注功能的加持,Coovally将进一步拓宽应用场景,提高模型精度,助力机器视觉行业发展。原创 2023-01-13 11:08:44 · 673 阅读 · 0 评论 -
百亿、千亿级参数的基础模型之后,我们正在步入以数据为中心的时代?
近年来,GPT-3、CLIP、DALL-E 、Imagen、Stabile Diffusion 等基础模型的出现令人惊叹。这些模型展现出的强大生成能力和情境学习能力,在几年前都是难以想象的。本文将探讨这些大规模技术的商业化。原创 2023-01-10 15:18:16 · 275 阅读 · 0 评论 -
Coovally质检应用案例 | 产品外观瑕疵检测
采用机器视觉的方法可以对产品外观缺陷检测,快速且准确的识别划痕,大幅提高了生产线的效率,提高了产品的生产质量。原创 2023-01-06 10:22:28 · 408 阅读 · 0 评论 -
Coovally任务详解之文字识别任务
人们在生产和生活中,要处理大量的文字、报表和文本。为了减轻人们的劳动,提高处理效率,自动识别字符的技术,已经成为机器视觉应用的一个重要领域。而Coovally也能做到这一点,并且仅需5步,零代码即可完成!原创 2022-12-26 15:27:09 · 230 阅读 · 0 评论 -
Coovally任务详解之文字检测任务
基于机器视觉系统,可以对文字进行识别检测,例如文字印刷检测、字符检测、喷码文字缺陷检测等,Coovally针对文字检测做到了高精度和低成本,且仅需5步就可以完成一个模型!原创 2022-12-15 13:39:51 · 236 阅读 · 0 评论 -
Coovally任务详解之语义分割任务
我们可以将语义分割认为是像素级别的图像分类。例如,在有许多汽车的图像中,分割会将所有对象标记为汽车对象。然后,一个称为实例分割的模型能够标记一个出现在图像中的物体的独立实例。这种分割在计算对象数量的应用程序中非常有用,例如计算商城的行人流量。原创 2022-12-08 09:53:30 · 217 阅读 · 0 评论 -
Coovally任务详解之实例分割任务
实例分割是视觉经典四个任务中相对最难的一个,它既具备语义分割的特点,需要做到像素层面上的分类,也具备目标检测的一部分特点,即需要定位出不同实例,即使它们是同一种类。但是通过Coovally,即可轻松完成实例分割任务。原创 2022-12-01 10:38:04 · 616 阅读 · 0 评论 -
基于Coovally的目标检测任务详解
目标检测任务(Object Detection)是计算机视觉的主要分支之一,目的是“识别目标并给出其在图中的确切位置”,确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。但是通过Coovally,不用了解目标检测的具体算法就可轻松完成目标检测任务。原创 2022-11-24 10:04:25 · 214 阅读 · 0 评论 -
基于Coovally的目标检测任务详解
目标检测任务(Object Detection)是计算机视觉的主要分支之一,目的是“识别目标并给出其在图中的确切位置”,确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。但是通过Coovally,不用了解目标检测的具体算法就可轻松完成目标检测任务。原创 2022-11-23 13:55:12 · 787 阅读 · 0 评论 -
通过Coovally 5步完成图像分类任务!
有了Coovally,不用阅读图像分类的书籍,也不用参考大量论文,5步即可完成图像分类任务!原创 2022-11-16 10:46:15 · 357 阅读 · 0 评论 -
【Coovally】强大工具-图像增强篇
本文将基于Coovally工具箱介绍常用的图像增强方法,Coovally 提供5类增强工具且每种增强方式包含多个子增强方式。用户使用图像增强工具(图像平滑处理,图片增强处理,色彩空间转换,边缘检测)可预览、对比和下载不同增强方式的增强图,辅助用户选择最优的增强方式增强样本集。原创 2022-11-08 11:10:47 · 1143 阅读 · 0 评论 -
Coovally助力明厨亮灶一步到位
为帮助企业快速、低成本的将AI技术应用于升级版“明厨亮灶”,跑码地Coovally提供了零门槛、高精度的AI建模能力,帮助企业轻松构建AI模型。基于跑码地Coovally,企业仅需普通业务人员利用业余时间,即可在2-3周内从0到1训练出可用于升级版“明厨亮灶”的厨师帽识别模型,并应用到厨房场景的智能视频分析业务中。原创 2022-10-27 13:44:31 · 676 阅读 · 1 评论