悬链线(Catenary)的数学模型。悬链线是一条在均匀重力场中由两点支撑、仅受自身重力作用的理想化细长、均匀、柔软、不可伸长的链条或线缆所形成的曲线。
悬链线的方程可以用以下的微分方程表示:
其中,( y ) 是垂直方向上的位移,( x ) 是水平方向上的位移,( a ) 是一个常数,与线缆的重量和水平张力有关。这个方程没有简单的解析解,但可以通过数值方法求解。
然而,如果我们假设线缆的水平张力远大于其重量,那么可以得到一个近似的解析解,即悬链线的参数方程:
其中,c是一个常数,与线缆的特性和支撑点的高度差有关,t是参数。
MATLAB代码:
clc;close all;clear all;warning off;%清除变量
% 参数设置
c = 10; % 常数c,可以调整来改变曲线的形状
t = linspace(-2, 2, 1000); % 参数t的范围和分辨率
% 计算悬链线的坐标
x = c * sinh(t);
y = c * (cosh(t) - 1);
% 突出显示端点
t_ends = [t(1), t(end)]; % 选择参数范围的端点
x_ends = c * sinh(t_ends); % 计算对应的x坐标
y_ends = c * (cosh(t_ends) - 1); % 计算对应的y坐标
% 绘图
figure; % 创建一个新的图形窗口
plot(x, y, 'b-', 'LineWidth', 2); % 绘制悬链线,设置颜色和线宽
hold on; % 保持当前图形,以便添加更多内容
plot(x_ends, y_ends, 'ro', 'MarkerSize', 10, 'LineWidth', 2); % 绘制端点,设置颜色和大小
xlabel('x'); % 设置x轴标签
ylabel('y'); % 设置y轴标签
grid on; % 显示网格线
axis equal; % 设置坐标轴等比例显示
hold off; % 释放当前图形
title('悬链线'); % 设置标题
程序结果如下: