6_梯度下降法(Gradient Descent)

6_梯度下降法(Gradient Descent)

梯度下降法是在机器学习领域的一个重要的搜索策略。在这一章,我们将详细讲解梯度下降法的基本原理,一步一步改进梯度下降算法,让大家理解梯度下降法中各种参数,尤其是学习率的意义。
同时,我们还将引申出随机梯度下降法和小批量梯度下降法两个方法,让大家对梯度下降法家族有一个全方位的认识。…

6-1 什么是梯度下降法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 导数代表 theta单位变化时,J相应的变化

  • 导数可以代表方向,对应J增大的方向
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    • 并不是所有函数都有唯一的极值点(多元多次函数)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6-3 线性回归中的梯度下降法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由于梯度的大小受样本数m影响,显然不合理,故除以样本数m,使其不受样本数量的影响。
在这里插入图片描述

6-4 实现线性回归中的梯度下降法

6-5 梯度下降法的向量化和数据标准化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6-6 随机梯度下降法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 模拟退火算法思想:模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性。
    从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解在这里插入图片描述

6-8 如何确定梯度计算的准确性?调试梯度下降法


在这里插入图片描述

# ipynb上的代码,没有print()


import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
X = np.random.random(size = (1000,10))

true_theta = np.arange(1,12,dtype = float)

X_b = np.hstack([np.ones((len(X),1)),X]   )
y = X_b.dot(true_theta) + np.random.normal(size = 1000)

print(X.shape)
print(y.shape)
print(true_theta)

def J(theta,X_b,y):  #定义损失函数
    try:
        return np.sum((y-X_b.dot(theta))**2  ) / len(X_b)  
    except:
        return float("inf")

def dJ_math(theta,X_b,y):  # 定义梯度 数学公式计算
    return X_b.T.dot(X_b.dot(theta) - y)*2. / len(y)

def dJ_debug(theta,X_b,y,epsilon=.01):    # 定义梯度 debug计算 
    res = np.empty(len(theta))
    for i in range(len(theta)):
        theta_1 = theta.copy()
        theta_1[i] += epsilon
        theta_2 = theta.copy()
        theta_2[i] -= epsilon
        res[i] = (J(theta_1,X_b,y) - J(theta_2,X_b,y))/(2*epsilon)
    
    return res

def gradient_descent(dJ,X_b,y,initial_theta,eta=1e-2,epsilon=1e-8,n_iters=1e4):
    theta = initial_theta
    i_iters = 0
    while i_iters < n_iters:
        gradient = dJ(theta,X_b,y)
        last_theta = theta
        theta = theta - eta * gradient
        if (abs(J(theta,X_b,y)-J(last_theta,X_b,y)))< epsilon:
            break
        i_iters += 1 

    return theta

X_b = np.hstack( ( np.ones((len(X),1)),X) )
initial_theta = np.zeros(X_b.shape[1])
eta = 0.01

%time theta = gradient_descent(dJ_debug,X_b,y,initial_theta,eta)
theta

%time theta = gradient_descent(dJ_math,X_b,y,initial_theta,eta)
theta

tip
dJ_debug用于验证调试梯度,速度较慢,可以取少量样本用dJ_debug得到正确的结果,再用公式推出数学解,对比结果。

dJ_debug不受当前损失函数J的影响,求梯度具有普适性。

6-9 有关梯度下降法的更多深入讨论

在这里插入图片描述
BGD:每次都需要遍历整个样本,每次向梯度下降最快的方向一定,稳定但是慢。
SGD:每次只看一个样本,梯度下降的方向不确定,甚至可能向反方向移动, 快但是不稳定。

MBGD:两种极端方法折中,每次却k个样本,k也成了一个超参数。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
总结:有些相关的代码只能在VSC运行,Jupyter就跑不了,特别是hstack()函数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值