c-minus
码龄8年
求更新 关注
提问 私信
  • 博客:296,153
    296,153
    总访问量
  • 43
    原创
  • 162
    粉丝
  • 24
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2017-05-30

个人简介:对机器学习、深度学习等领域方面的研究颇有兴趣

博客简介:

cpluss的博客

查看详细资料
个人成就
  • 获得476次点赞
  • 内容获得124次评论
  • 获得1,237次收藏
  • 代码片获得320次分享
  • 博客总排名1,550,830名
创作历程
  • 1篇
    2021年
  • 5篇
    2020年
  • 17篇
    2019年
  • 20篇
    2018年
成就勋章
TA的专栏
  • ClickHouse
    2篇
  • 强化学习
    2篇
  • network
    13篇
  • NLP
    16篇
  • postgresql
    1篇
  • life
    2篇
  • other
    4篇
  • Pytorch
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

50人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

[c++规范]:Google Runtime Int

[c++规范]:Google Runtime Intconsider replacing ‘unsigned long long’ with ‘uint64’​ 最近在用clang-tidy检查代码规范时,报了一个Google-Runtime-Int的error:​ 查了一下资料,原因应该时clang-tidy的代码检查,应用了google-runtime-int规范,具体的规范链接在: Google RunTimeInt 。具体的想法:尽量不适用long、unsigned这类标识符,而是使用int
原创
发布博客 2021.02.01 ·
479 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

强化学习: 贝尔曼方程与马尔可夫决策过程

强化学习: 贝尔曼方程与马尔可夫决策过程一、简介贝尔曼方程和马尔可夫决策过程是强化学习非常重要的两个概念,大部分强化学习算法都是围绕这两个概念进行操作。尤其是贝尔曼方程,对以后理解蒙特卡洛搜索、时序差分算法以及深度强化学习算法都至关重要。这篇文章主要介绍贝尔曼方程。常用的资料:《Reinforcement Learning: An Introduction》 author: Richard S.Sutton and Andrew G.BartoUCL Course: https://www.dav
原创
发布博客 2020.12.18 ·
4002 阅读 ·
40 点赞 ·
3 评论 ·
168 收藏

clickhouse源码安装(无sudo权限,gcc、cmake、ninja源码安装)

ClickHouse 源码安装 (无sudo情况下,gcc,cmake,ninja源码安装)简介​ 由于工作和学习的需要,需要使用clickhouse数据库。如果只是限于日常的简单使用,那么不需要源码安装;如果涉及到对clickhouse的改造和开发,则必须要利用源码安装。而且限制于个人的身份,很难去获取sudo权限,因此安装各种软件就会收到限制。下面就介绍一下,非sudo权限下源码安装clickhouse的全部过程。gcc安装​ clickhouse支持的gcc版本为10.0以上,而大部分linu
原创
发布博客 2020.12.16 ·
2832 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

强化学习:强化学习简介

强化学习:强化学习简介一、简介​   由于工作和研究的需要,不得不接触一部分的强化学习课程。而强化学习系列大部分原理都涉及到相当多的数学原理,啃起来也比较麻烦。我在学习的过程中,也是参考了多方资料,整个系列看下来,深感只有真正动手coding才能理解到强化学习的精髓吧。但碍于时间的限制,我并没有真正的去动手编程,而是粗略的去阅读了别人的源码,这一部分欠缺,等日后有时间了再补上去。​   常用的资料:​   《Reinforcement Learning: An Introduction》 autho
原创
发布博客 2020.12.15 ·
606 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

XLNet模型

你真的懂XLNet吗?一、概述​ 近日,随着GPT-3模型的新鲜出炉,NLP领域似乎正朝着“烧钱+烧数据”的方向一去不返。从18年的BERT,到19年XLNet,再到如今的GPT-3,烧钱模式愈演愈烈,NLP似乎已经不适合穷人研究了,调参侠的生存空间被严重挤压。尽管如此,在如今开口不提BERT就不好意思说自己是NLPer的时代,我们还是很有必要对这些模型进行深入的了解的。本文主要是借着课程需要的契机,非常非常非常非常详细的介绍XLNet模型。至于XLNet的源码,看情况考虑是否阅读。二、背景知识​
原创
发布博客 2020.06.18 ·
1577 阅读 ·
12 点赞 ·
4 评论 ·
13 收藏

字节跳动面经(已收到offer)

情况说明本人系非985非211渣硕,目前研一,学分修够,想找一个日常实习。在牛客网上投了很多简历,也面试很多的公司,最终选择了字节跳动。面试情况阿里巴巴阿里巴巴面试的是达摩院,做命名实体识别,面试方式是电话面试。这个工作对我来说特别吸引人,因为我之前就是做命名实体识别的。但是,达摩院那么要求我至少实习一年,所以只能遗憾了。阿里巴巴感觉很重视过往的实习经验,会针对你做的项目深度挖掘:...
原创
发布博客 2020.04.13 ·
7718 阅读 ·
12 点赞 ·
16 评论 ·
15 收藏

文本相似度相关工作调研(二)

《Short Text Similarity With Word Embeddings》论文解释一、概要​ 本文主要介绍基于词嵌入的短文本相似度计算方法。相比较于其他方法,这种方法的特点在于:几乎不需要任何外部知识(例如不需要语法分析等)不需要手工构造特征此方法计算的是语义相似度,并不是语法或者词型相似度(另一篇文章中提高到LCS、编辑距离等)能够利用多种方式、多种语料获得的词向量(...
原创
发布博客 2019.11.13 ·
531 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

文本相似度相关工作调研(一)

A Survey Of Text Similarity Approach(本文翻译自上述文献)方法分为四种string-based,corpus-based,knowledge-based,Hybrid Similarity MeasureIntroduction:​ lexical similarity: string-based​ semantic similarity: cor...
原创
发布博客 2019.11.12 ·
671 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

有效集算法python实现

本文实现python版本的有效集算法,有效集算法的原理暂不介绍。# coding=utf-8# 有效集算法实现,解决二次规划问题# min 1/2x.THx+c.Tx# s.t. Ax>=bimport numpy as npclass Active_set(object): def __init__(self, H, c, A, b): self.H...
原创
发布博客 2019.10.16 ·
2148 阅读 ·
10 点赞 ·
2 评论 ·
12 收藏

单纯形法python实现

单纯形法介绍详见我的另一篇文章https://blog.csdn.net/cpluss/article/details/100806516python代码# coding=utf-8# 单纯形法的实现,只支持最简单的实现方法# 且我们假设约束矩阵A的最后m列是可逆的# 这样就必须满足A是行满秩的(m*n的矩阵)import numpy as npclass Simplex(o...
原创
发布博客 2019.10.16 ·
5922 阅读 ·
17 点赞 ·
0 评论 ·
46 收藏

单纯形法解释

单纯形法的理解理解单纯形法之前必须要知道一下若干定理或者知识。对于Ax=b,A:m∗n,x:n∗1,b:n∗1Ax=b,\quad A:m*n,\quad x:n*1,\quad b:n*1Ax=b,A:m∗n,x:n∗1,b:n∗1,可以写成下列形式:Ax=(A1,A2,...An)(x1x2...xn)=A1x1+A2x2+...+Anxn=bAx=(A^1,A^2,...A...
原创
发布博客 2019.09.13 ·
40341 阅读 ·
33 点赞 ·
5 评论 ·
79 收藏

PyTorch系列(3):tensor生成操作大全

下面参数中的省略号代表dtype、requires_grad等常规参数。一、torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor1、用data创建一个tensor2、torch.tensor会从data出复制数据,意味着生成的tensor不会和data共享内存(...
原创
发布博客 2019.05.16 ·
12330 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

PyTorch系列(2):tensor操作大全

torch.is_tensor(obj):判断obj是否是tensor类型import torchx = torch.randn(1,2)y = x.numpy()print(torch.is_tensor(x))print(torch.is_tensor(y))TrueFalsetorch.is_storage(obj): 判断obj是否是pytorch storage 对象...
原创
发布博客 2019.05.16 ·
1567 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

Pytorch系列(1):torch.gather()

torch.gather作用:收集输入的特定维度指定位置的数值参数:input(tensor):   待操作数。不妨设其维度为(x1, x2, …, xn)dim(int):   待操作的维度。index(LongTensor):   如何对input进行操作。其维度有限定,例如当dim=i时,index的维度为(x1, x2, …y, …,xn),...
原创
发布博客 2019.05.16 ·
49640 阅读 ·
99 点赞 ·
9 评论 ·
189 收藏

xshell + zsh终端乱码解决

待解决的问题1、xshell安装zsh之后,控制台不显示箭头,而显示问号,如图所示。2、xshell显示中文乱码解决办法无论是中文乱码还是箭头显示问题,其实质都是xshell的默认设置问题:不支持非ascii编码,也导致了字体显示错误,因此需要设置字体格式。方法如下:1、打开“文件”->“属性”:2、点击上图中的“终端”,在“编码”选项中选择UTF-8编码。3、点击确定,...
原创
发布博客 2019.05.10 ·
3339 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

计算所考研复试

计算所考研复试本人参加19年计算所考研360+,专业课为863,计算所复试分数线为322.\quad\quad简单说一下结果吧,本科哪里的就不说了,成功上岸,但不太理想,不想再提了。\quad\quad我报的是计算所网数实验室,绝对热门实验室,据我所知的热门实验室还有网技、前瞻、智信和体系结构\quad\quad初试什么的就不说了,说一下面试吧。\quad\quad面试分两天进行,开始的...
原创
发布博客 2019.03.27 ·
4791 阅读 ·
0 点赞 ·
6 评论 ·
25 收藏

CRF代码及实现原理(二)

主要介绍CRF代码实现代码来源:pytorch官网代码链接: https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html配合另一篇文章讲解,看此篇之前,最好看一下另一篇文章(CRF原理以及维特比解码),看完之后会很容易理解另一篇文章链接:https://blog.csdn.net/cpluss/article/det...
原创
发布博客 2019.03.26 ·
5412 阅读 ·
6 点赞 ·
0 评论 ·
29 收藏

CRF代码实现及原理(一)

CRF:条件随机场(Conditional Random Field)什么样的问题需要CRF模型如果我们的数据是一个序列,后面的结果受到前面结果的影响,此时就需要我们使用CRF模型。例如,我们假设把一个人的日常生活拍成照片,而一张张着嘴的照片我们无法判断他是吃饭还是在唱歌(or 其他),但是如果这张照片之前有其他照片显示为餐桌、米饭等,我们则基本可以判定他在吃饭;如果显示为ktv,则基本可以判...
原创
发布博客 2019.03.26 ·
10115 阅读 ·
12 点赞 ·
1 评论 ·
27 收藏

EM算法详解

EM Expectation-Maxium详细推导参考:https://www.cnblogs.com/pinard/p/6912636.htmlEM算法想要解决的问题我们想要求解模型的未知参数,一般可以利用极大化模型的对数似然函数。但是有的问题不仅模型参数未知,而且还存在其他的未知的隐含数据,这个时候就不能直接利用极大化似然函数了。这个时候,我们的思路是,对于两种未知变量(待求的模型参数...
原创
发布博客 2019.03.26 ·
460 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Bert代码详解(二)

这是bert的pytorch版本(与tensorflow一样的,这个更简单些,这个看懂了,tf也能看懂),地址:https://github.com/huggingface/pytorch-pretrained-BERT主要内容在pytorch_pretrained_bert/modeling文件中。由于这几天要参见计算所复试,超级紧张,所以先把草稿贴在这里,复试过了再加以完善!!!嘤嘤...
原创
发布博客 2019.03.12 ·
7090 阅读 ·
9 点赞 ·
2 评论 ·
33 收藏
加载更多