Stable Diffusion是一款基于深度学习的AI图像生成模型,可以根据文本描述生成逼真的图像。由于模型的庞大体积,在本地运行和部署存在一定困难。幸运的是,AWS提供了一个解决方案,可以在AWS EKS(Elastic Kubernetes Service)上快速部署Stable Diffusion。

准备工作
- 安装AWS CLI并配置您的AWS凭证
- 安装Git和Node.js/npm
注意:npm 9.8.1和Node.js 18.18.2
部署Stable Diffusion
AWS提供了一个开源项目stable-diffusion-on-eks,可以简化部署流程。我们首先克隆该项目:
接下来,进入deploy目录并运行deploy.sh脚本。该脚本将自动完成以下工作:
- 安装必要的运行时和工具
- 创建S3存储桶,从HuggingFace下载Stable Diffusion 1.5基础模型并存储在桶中
- 使用提供的示例镜像创建包含Stable Diffusion Web UI的EBS快照
- 创建并部署包含Stable Diffusion运行时的解决方案
您可以使用多个参数来自定义部署:
- -n: 自定义解决方案名称
- -R: 指定部署区域
- -b: 指定现有S3桶名称,用于存储模型(提前创建)
- -r: 指定运行时名称
其他可选参数包括:
- -d: 只生成配置文件,不执行部署
- -s: 指定现有EBS快照ID
- -t: 指定运行时类型(sdwebui或comfyui)
如果需要部署多个运行时或自定义配置,可以先使用--dry-run生成配置文件,再手动修改。
部署完成后,您可以使用以下命令查看部署状态:
添加新模型
如果需要添加新的Stable Diffusion模型,可以按照以下步骤操作:
使用--dry-run生成配置文件:
下载新增一个运行时为sdruntime-02的部分:
退出deploy目录,使用CDK部署更新:
验证
维护命令
以下是一些常用的维护命令:
排查链路:keda scaledobject -> hpa -> deployment -> replicaset -> pod
测试:单台机器的QPS及扩容时的错误数量和产生错误数的规律
通过在AWS EKS上部署Stable Diffusion,您可以轻松获得强大的AI图像生成能力,而无需在本地运行庞大的模型。AWS的解决方案使部署过程变得简单高效。
170

被折叠的 条评论
为什么被折叠?



