【leetcode系列】172. 阶乘后的零

该博客主要解析LeetCode第172题——阶乘后的零个数。博主指出,要解决这个问题,需关注2和5的倍数,因为只有它们相乘才能产生0。由于5的出现次数少于2,所以只需计算n分解质因数后包含5的个数。博主通过举例说明,并提出解决方案,强调理解这一规律对于实现递归或循环求解至关重要,涉及知识点为数论。
摘要由CSDN通过智能技术生成

题目描述

给定一个整数 n,返回 n! 结果尾数中零的数量。	
示例 1:	
输入: 3	
输出: 0	
解释: 3! = 6, 尾数中没有零。	
示例 2:	
输入: 5	
输出: 1	
解释: 5! = 120, 尾数中有 1 个零.	
说明: 你算法的时间复杂度应为 O(log n) 。	
来源:力扣(LeetCode)	
链接:https://leetcode-cn.com/problems/factorial-trailing-zeroes	
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

我们需要求解这n个数字相乘的结果末尾有多少个0,由于题目要求log的复杂度,因此暴力求解是不行的。

通过观察,我们发现如果想要结果末尾是0,必须是分解质因数之后,2 和 5 相乘才行,同时因数分解之后发现5的个数远小于2, 因此我们只需要求解这n数字分解质因数之后一共有多少个5即可.

640?wx_fmt=png

如图如果n为30,那么结果应该是图中红色5的个数,即7。

640?wx_fmt=png

我们的结果并不是直接f(n) = n / 5, 比如n为30, 25中是有两个5的。 类似,n为150,会有7个这样的数字,通过观察我们发现规律 f(n)=n/5+n/5^2+n/5^3+n/5^4+n/5^5+..

640?wx_fmt=png

如果可以发现上面的规律,用递归还是循环实现这个算式就看你的了。

关键点解析

  • 数论

代码

/*	
 * @lc app=leetcode id=172 lang=javascript	
 *	
 * [172] Factorial Trailing Zeroes	
 */	
/**	
 * @param {number} n	
 * @return {number}	
 */	
var trailingZeroes = function(n) {	
  // tag: 数论	
  // if (n === 0) return n;	
  // 递归:f(n) = n / 5 + f(n / 5)	
  // return Math.floor(n / 5)  + trailingZeroes(Math.floor(n / 5));	
  let count = 0;	
  while (n >= 5) {	
    count += Math.floor(n / 5);	
    n = Math.floor(n / 5);	
  }	
  return count;	
};


640?wx_fmt=jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值