「Corn #12」梦回高中

这篇博客深入探讨了数学分析中的几个关键定理,包括Heine-Borel覆盖定理、一致连续性、Rolle定理、中值定理及其在求解多项式函数高阶导数问题中的应用。通过一系列严谨的证明,展示了在闭区间上连续函数的性质,如最值原理和导数的性质,为理解函数行为提供了坚实的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于『「Corn #12」梦回高中』

万物皆数。
Everything \ \ counts.$

题目

深夜 222 点,生无可恋的小 FFF 正在对着空白的作业本和题面只有一行的数分证明题发呆。
FFF 无比怀念高中时代那些让人算到手抽筋的计算题。
终于,他坚持不住了,趴在书桌上就睡了过去。他在梦里回到了高中,看到了梦寐以求的计算题:
已知一个 nnn 次多项式函数 f(x)f(x)f(x) ,求它的 nnn 阶导数即 f(n)(x)f^{(n)}(x)f(n)(x)
然而他的计算能力已经清零了,所以他需要你来帮他算。

题并不难,但数学证明要命。

铺垫

定理 1.1

描述:

非空有界闭集合列 S1S_1S1S2S_2S2⋯\cdotsSnS_nSn⋯\cdots,若满足一下两个条件,则存在唯一的一点 PPP 属于所有这些闭集 SnS_nSn

(i)(i)(i) S1⊂S2⊂S3⊂⋯⊂Sn⊂⋯,S_1 \subset S_2 \subset S_3 \subset \cdots \subset S_n \subset \cdots,S1S2S3Sn

(ii)(ii)(ii) lim⁡n→∞δ(Sn)=0\lim\limits_{n \to \infty} \delta(S_n) = 0nlimδ(Sn)=0

证明:

对每个 nnn,若选取属于 SnS_nSn 的点 PnP_nPn ,则点阵 {Pn}\{P_n\}{Pn} 收敛。事实上,根据 (ii)(ii)(ii) 对于任意的正实数 ε\varepsilonε 存在正实数 n0(ε)n_0(\varepsilon)n0(ε),只要 n>n0(ε)n > n_0(\varepsilon)n>n0(ε),就有 δ(Sn)<ε\delta(S_n) < \varepsilonδ(Sn)<ε 。当 n,m>n0(ε)n,m > n_0(\varepsilon)n,m>n0(ε) 时,如果 m⩾nm \geqslant nmn,则根据 (i)(i)(i) , Pm∈Sm⊂SnP_m \in S_m \subset S_nPmSmSn , 所以,

∣PmPn∣<δ(Sn)<ε|P_mP_n| < \delta(S_n) < \varepsilonPmPn<δ(Sn)<ε

根据 CauchyCauchyCauchy 判别法{Pn}\{P_n\}{Pn} 收敛。于是,令 P=lim⁡n→∞PnP = \lim\limits_{n \to \infty} P_nP=nlimPn, 则对每个 nnn ,若 m⩾nm \geqslant nmn,则 Pm∈SnP_m \in S_nPmSn,因此 P=lim⁡n→∞PmP = \lim\limits_{n \to \infty} P_mP=nlimPm 属于 [Sn][S_n][Sn] 。根据假设,所以 PPP 属于所有的 SnS_nSn

定理 1.2 (Heine-Borel 覆盖定理)

描述:

有界闭集是紧致的。

证明:

SSS 是有界闭集,UUUSSS 的开覆盖。

假设 SSS 不能被属于 UUU 的有限个开集覆盖。

因为 SSS 有界,则选取闭区间 [a,b][a,b][a,b],令 I=[a,b]I = [a,b]I=[a,b]

那么 SSS 包含于正方形 Δ=I×I\Delta = I \times IΔ=I×I

S⊂Δ=I×I={(x,y)∈R2∣a⩽x⩽b,a⩽y⩽b}S \subset \Delta = I \times I = \{(x,y)\in \rm{R}^2|\mathbb {a \leqslant x \leqslant b,a \leqslant y \leqslant b}\}SΔ=I×I={(x,y)R2axb,ayb}

Δ\DeltaΔ 直径 δ=2(b−a)\delta = \sqrt{2}(b - a)δ=2(ba) 。 把 III 以其中点 c=(a+b)/2c = (a + b) / 2c=(a+b)/2 分割成两个闭区间,I′=[a,c]I' = [a,c]I=[a,c]I′′=[a,c]I'' = [a,c]I=[a,c] 。则 Δ\DeltaΔ444 个直径为 δ/2\delta / 2δ/2 的正方形 Δ′=I′×I′\Delta' = I' \times I'Δ=I×IΔ′′=I′′×I′\Delta'' = I'' \times I'Δ=I×IΔ′′′=I′×I′′\Delta''' = I' \times I''Δ=I×IΔ′′′′=I′′×I′′\Delta'''' = I'' \times I''Δ=I×I 分割。

对应地,SSS444 个闭集 S′=S∩Δ′S' = S \cap \Delta'S=SΔS′′=S∩Δ′′S'' = S \cap \Delta''S=SΔS′′′=S∩Δ′′′S''' = S \cap \Delta'''S=SΔS′′′′=S∩Δ′′′′′S'''' = S \cap \Delta'''''S=SΔ

S=S′∪S′′∪S′′′∪S′′′′S = S' \cup S'' \cup S''' \cup S''''S=SSSS

在这 444 个闭集中,如果每一个都被属于 UUU 的有限个开集覆盖,那么 SSS 也都被属于 UUU 的有限个开集覆盖。这与假设想悖。所以,在 S′S'SS′′S''SS′′′S'''SS′′′′S''''S 中至少有一个不被属于 UUU 的有限个开集覆盖。设其为 S1S_1S1,则

S1⊂SS_1 \subset SS1Sδ(S1)⩽δ/2\delta(S_1) \leqslant \delta/2δ(S1)δ/2

同理对 S1S_1S1,把不被属于 UUU 的有限个开集覆盖的闭集记为 S2S_2S2,则

S2⊂S1S_2 \subset S_1S2S1δ(S2)⩽δ/22\delta(S_2) \leqslant \delta/2^2δ(S2)δ/22

重复上述操作,得不被属于 UUU 的有限个开集覆盖的闭集列 SnS_nSn : S1S_1S1S2S_2S2S3S_3S3…\dots ,并且

S⊃S1⊃S2⊃S3⋯⊃Sn⊃⋯S \supset S_1 \supset S_2 \supset S_3 \cdots \supset S_n \supset \cdotsSS1S2S3Sn

δ(Sn)⩽δ/2n\delta(S_n) \leqslant \delta / 2 ^nδ(Sn)δ/2n

根据 定理 1.11.11.1 ,存在所有属于 SnS_nSn 的点 PPP,因为 P∈SP \in SPSSSS 被属于 UUU 的开集覆盖 ,所以 PPP 属于 UUU 的开集之一的 U′U'U 。取 P∈U′P \in U'PUUε′(P)⊂U′U'_\varepsilon(P) \subset U'Uε(P)U 成立的正实数 ε\varepsilonε,若给定以自然数 nnn ,则 P∈SnP \in S _nPSnδ(Sn)⩽δ/2n≤ε\delta(S_n) \leqslant \delta/2^n \leq \varepsilonδ(Sn)δ/2nε,因此 Sn∈U′S_n \in U'SnU。矛盾。所以 SSS 被属于 UUU 的有限的开集覆盖。即 SSS 是紧致集合。

定理 1.3

描述:

如果函数在闭区间 [b,c][b,c][b,c] 上连续,那么它在该区间上一致连续。

证明:

f(x)f(x)f(x)I=[b,c]I = [b,c]I=[b,c] 上的连续函数, ε\varepsilonε 为任意给定的正实数。因为 f(x)f(x)f(x)III 上连续,所以对于每点 a∈Ia \in IaI ,存在正实数 δa\delta_aδa,只要

∣x−a∣<δa|x - a| < \delta_axa<δa

就有

∣f(x)−f(a)∣<ε2|f(x) - f(a)| < \frac{\varepsilon}{2}f(x)f(a)<2ε

成立。若 UaU_aUaaaaδa/2\delta_a / 2δa/2 邻域:

Ua=(a−12δa,a+12δa)U_a = \left(a - \frac{1}{2}\delta_a,\quad a + \frac{1}{2}\delta_a\right)Ua=(a21δa,a+21δa)

III 被这个邻域 UaU_aUaa∈Ia \in IaI 覆盖。因为 III 是有界闭集,所以根据 定理 1.21.21.2 ,III 是紧致集合。所以 III 被有限个 UaU_aUa 覆盖,即

I⊂⋃k=1mUakI \subset \bigcup_{k = 1}^m U_{a_k}Ik=1mUak

如果把 mmm 个实数 δak/2\delta_{a_k} / 2δak/2k=1,2,3,⋯ ,m,k = 1, 2, 3, \cdots,m,k=1,2,3,,m, 中嘴子傲的一个设为 δ\deltaδ ,那么如下可证,当 ∣x−y∣<δ|x - y| < \deltaxy<δ 时,∣f(x)−f(y)∣<ε|f(x) - f(y)| < \varepsilonf(x)f(y)<ε 成立。事实上,因为 y∈Iy \in IyI,所以 yyy 属于 UakU_{a_k}Uak 中的某一个,y∈Uaky \in U_{a_k}yUak,即

∣y−ak∣<12δak|y - a_k| < \frac{1}{2}\delta_{a_k}yak<21δak

因此

∣f(y)−f(ak)∣<ε2|f(y) - f(a_k)| < \frac{\varepsilon}{2}f(y)f(ak)<2ε

又因为 ∣x−y∣<δ|x - y| < \deltaxy<δ,所以

∣x−ak∣⩽∣x−y∣+∣y−ak∣<δ+12δak⩽δak|x - a_k| \leqslant |x - y| + |y - a_k| < \delta + \frac{1}{2}\delta_{a_k} \leqslant \delta_{a_k}xakxy+yak<δ+21δakδak

从而

∣f(x)−f(ak)∣<ε2|f(x) - f(a_k)| < \frac{\varepsilon}{2}f(x)f(ak)<2ε

进而

∣f(x)−f(y)∣⩽∣f(x)−f(ak)∣+∣f(ak)−f(y)∣<ε|f(x) - f(y)| \leqslant |f(x) - f(a_k)| + |f(a_k) - f(y)| < \varepsilonf(x)f(y)f(x)f(ak)+f(ak)f(y)<ε

定理 1.4

描述:

在闭区间上定义的连续函数,具有最大值和最小值。

证明:

f(x)f(x)f(x)I=[b,c]I = [b,c]I=[b,c] 上的连续函数。根据 定理 1.31.31.3 ,因为 f(x)f(x)f(x)III 上一致连续,因此存在正实数 δ\deltaδ,使得当 ∣x−y∣<δ,x∈I,y∈I|x - y| < \delta, x \in I,y \in Ixy<δ,xI,yI 时, ∣f(x)−f(y)∣<1|f(x) - f(y)| < 1f(x)f(y)<1 成立。设 mmm 是满足 mδ>c−bm\delta > c - bmδ>cb 的自然数。对于任意 x∈Ix \in IxI ,区间 [b,x][b,x][b,x]m−1m - 1m1 个点 x1,x2,x3,⋯ ,xm−1x_1, x_2, x_3,\cdots,x_{m - 1}x1,x2,x3,,xm1 分成 mmm 等分。令 x0=b,xm=xx_0 = b, x_m = xx0=b,xm=x ,则

0<xk−xk−1=1m(x−b)⩽1m(c−b)<δ0 < x_k - x _{k - 1} = \frac{1}{m}(x - b) \leqslant \frac{1}{m}(c - b) < \delta0<xkxk1=m1(xb)m1(cb)<δ

因此

∣f(xk)−f(xk−1)∣<1|f(x_k) - f(x_{k - 1})| < 1f(xk)f(xk1)<1

所以

∣f(x)−f(b)∣=∣∑k=1m(f(xk)−f(xk−1))∣⩽∑k=1m∣f(xk)−f(xk−1)∣<m|f(x) - f(b)| = \left|\sum_{k = 1}^{m} (f(x_k) - f(x_{k - 1}))\right| \leqslant \sum_{k = 1}^m \left|f(x_k) - f(x_{k - 1})\right| < mf(x)f(b)=k=1m(f(xk)f(xk1))k=1mf(xk)f(xk1)<m

f(x)f(x)f(x) 有界,即 f(I)f(I)f(I) 有界。

β\betaβf(I)f(I)f(I) 的上确界,则 f(x)⩽βf(x) \leqslant \betaf(x)β 。若假设 β\betaβ 不是 f(x)f(x)f(x) 的最大值,则当 x∈Ix \in IxI 时,恒有 f(x)<βf(x) < \betaf(x)<β 成立。因此,若 g(x)=1/(β−f(x))g(x) = 1/(\beta - f(x))g(x)=1/(βf(x)),则 g(x)g(x)g(x) 也是定义在 III 上的连续函数。所以,综上,g(x)g(x)g(x) 有界。即存在 g(x)<γg(x) < \gammag(x)<γ 的正实数 γ\gammaγ:

1β−f(x)=g(x)<γ\frac{1}{\beta - f(x)} = g(x) < \gammaβf(x)1=g(x)<γ

因此

f(x)<β−1γf(x) < \beta - \frac{1}{\gamma}f(x)<βγ1

矛盾。所以, β\betaβf(x)f(x)f(x) 的最大值。同理,如果 α\alphaαf(I)f(I)f(I) 的下确界,那么 α\alphaαf(x)f(x)f(x) 的最小值。

引理 1.1 (Rolle 定理)

描述:

如果函数 f(x)f(x)f(x) 在闭区间

证明:

γ=f(a)=f(b)\gamma = f(a) = f(b)γ=f(a)=f(b),如果在 [a,b][a,b][a,b]f(x)f(x)f(x) 恒等于 γ\gammaγ,那么对于所有的 ξ(a<ξ<b)\xi(a < \xi < b)ξ(a<ξ<b),都有 f′(ξ)=0f'(\xi) = 0f(ξ)=0 。因此暂不考虑。由 定理 1.31.31.3 ,在闭区间 [a,b][a,b][a,b] 上定义的连续函数 f(x)f(x)f(x) 具有最大值 β=f(ξ)(a⩽ξ⩽b)\beta = f(\xi)(a \leqslant \xi \leqslant b)β=f(ξ)(aξb) 和最小值 α=f(η)(a⩽η⩽b)\alpha = f(\eta)(a \leqslant \eta \leqslant b)α=f(η)(aηb)。由于不考虑 β=α=γ\beta = \alpha = \gammaβ=α=γ 的情况,所以或者 β>γ\beta > \gammaβ>γ 或者 α<γ\alpha < \gammaα<γ。如果 β=f(ξ)>γ\beta = f(\xi) > \gammaβ=f(ξ)>γ,那么 α<ξ<β\alpha < \xi < \betaα<ξ<β。则存在

f′(ξ)=lim⁡h→0f(ξ+h)−f(x)hf'(\xi) = \lim\limits_{h \to 0} \frac{f(\xi + h) - f(x)}{h}f(ξ)=h0limhf(ξ+h)f(x)

因为 f(ξ+h)−f(ξ)⩽0f(\xi + h) - f(\xi) \leqslant 0f(ξ+h)f(ξ)0,所以由 h>0h > 0h>0 或者 h<0h < 0h<0,可知 (f(ξ+h)−f(ξ))/h⩽0(f(\xi + h) - f(\xi)) / h \leqslant 0(f(ξ+h)f(ξ))/h0 或者 (f(ξ+h)−f(ξ))/h⩾0(f(\xi + h) - f(\xi)) / h \geqslant 0(f(ξ+h)f(ξ))/h0。因此

f′(ξ)=lim⁡h→+0f(ξ+h)−f(x)h⩽0f'(\xi) = \lim\limits_{h \to +0} \frac{f(\xi + h) - f(x)}{h} \leqslant 0f(ξ)=h+0limhf(ξ+h)f(x)0

f′(ξ)=lim⁡h→−0f(ξ+h)−f(x)h⩾0f'(\xi) = \lim\limits_{h \to -0} \frac{f(\xi + h) - f(x)}{h} \geqslant 0f(ξ)=h0limhf(ξ+h)f(x)0

所以 f′(ξ)=0f'(\xi) = 0f(ξ)=0

如果 α=f(η)<γ\alpha = f(\eta) < \gammaα=f(η)<γ,那么 α<η<β\alpha < \eta < \betaα<η<β,同理可证 f′(η)=0f'(\eta) = 0f(η)=0

定理 1.5 (中值定理)

描述:

如果函数 f(x)f(x)f(x) 在闭区间 [a,b][a,b][a,b] 上连续,在开区间上可微,则存在点 ξ\xiξ 满足条件

f′(ξ)=f(b)−f(a)b−a,a<ξ<bf'(\xi) = \frac{f(b) - f(a)}{b - a},\quad a < \xi < bf(ξ)=baf(b)f(a),a<ξ<b

证明:

如果设

q=f(b)−f(a)b−a,q = \frac{f(b)-f(a)}{b-a},q=baf(b)f(a),

则过 fff 的图像 GfG_fGf 的两端点 (a,f(a)),(b,f(b))(a,f(a)),(b,f(b))(a,f(a)),(b,f(b)) 的直线 lll 的方程式为:

y=f(a)+q(x−a)y=f(a)+q(x-a)y=f(a)+q(xa)

若令 f(x)f(x)f(x) 与方程式右边相减所得差为

g(x)=f(x)−f(a)−q(x−a)g(x)=f(x)-f(a)-q(x-a)g(x)=f(x)f(a)q(xa)

g(x)g(x)g(x)[a,b][a,b][a,b] 上连续,在 (a,b)(a,b)(a,b) 上可导,并且 g(a)=g(b)=0g(a) = g(b) = 0g(a)=g(b)=0,所以由 引理 1.11.11.1 ,存在一点 ξ∈(a,b)\xi \in(a,b)ξ(a,b) ,使得 g′(ξ)=f′(x)−qg'(\xi) = f'(x) - qg(ξ)=f(x)q,所以 f′(ξ)=qf'(\xi) = qf(ξ)=q

定理 1.6

描述:

设函数 f(x),g(x)f(x),g(x)f(x),g(x),在闭区间 [a,b][a,b][a,b] 连续,在开区间 (a,b)(a,b)(a,b) 上可微,并且设 f′(x),g′(x)f'(x),g'(x)f(x),g(x) 在任意点 xxx 处不同时为 000 。如果 g(a)≠g(b)g(a) \neq g(b)g(a)=g(b) ,则存在一点 ξ\xiξ,使得

f′(ξ)g′(ξ)=f(b)−f(a)g(b)−g(a),a<ξ<b\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)},\quad a < \xi < bg(ξ)f(ξ)=g(b)g(a)f(b)f(a),a<ξ<b

成立。

证明:

λ=f(b)−f(a)\lambda = f(b) - f(a)λ=f(b)f(a)μ=g(b)−g(a)\mu = g(b)-g(a)μ=g(b)g(a),定义辅助函数

ϕ(x)=μ(f(x)−f(a))−λ(g(x)−g(a))\phi(x)=\mu(f(x)-f(a))-\lambda(g(x)-g(a))ϕ(x)=μ(f(x)f(a))λ(g(x)g(a))

ϕ(x)\phi(x)ϕ(x) 在闭区间 [a,b][a,b][a,b],在开区间 (a,b)(a,b)(a,b) 可微,并且 ϕ(a)=ϕ(b)=0\phi(a)=\phi(b)=0ϕ(a)=ϕ(b)=0,所以由 引理 1.11.11.1,存在一点 ξ(a<ξ<b)\xi(a<\xi<b)ξ(a<ξ<b),使得 ϕ′(ξ)=0\phi'(\xi) = 0ϕ(ξ)=0。因为 ϕ′(x)=μf′(x)−λg′(x)\phi'(x) = \mu f'(x)-\lambda g'(x)ϕ(x)=μf(x)λg(x),所以 μf′(ξ)=λg′(ξ)\mu f'(\xi)=\lambda g'(\xi)μf(ξ)=λg(ξ),即

(g(b)−g(a))f′(ξ)=(f(b)−f(a))g′(ξ)(g(b)-g(a))f'(\xi)=(f(b)-f(a))g'(\xi)(g(b)g(a))f(ξ)=(f(b)f(a))g(ξ)

g′(ξ)=0g'(\xi) = 0g(ξ)=0 ,那么因为 g(b)−g(a)≠0g(b)-g(a)\neq 0g(b)g(a)=0,所以 f′(ξ)=0f'(\xi) = 0f(ξ)=0。矛盾。故 g′(x)≠0g'(x) \neq 0g(x)=0 。因此,

f′(ξ)g′(ξ)=f(b)−f(a)g(b)−g(a)\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}g(ξ)f(ξ)=g(b)g(a)f(b)f(a)

定理 1.7

描述:

f(x)f(x)f(x) 是在 IIInnn 阶可微的函数,点 aaa 属于区间 III。则对于属于区间 III 的任意点 xxx,存在介于 xxxaaa 之间的一点 ξ\xiξ ,使得

f(x)=f(a)+∑k=1n−1f(k)(a)k!(x−a)+fn(ξ)n!(x−a)nf(x)=f(a)+\sum_{k=1}^{n-1}\frac{f^{(k)}(a)}{k!}(x-a)+\frac{f^n(\xi)}{n!}(x-a)^nf(x)=f(a)+k=1n1k!f(k)(a)(xa)+n!fn(ξ)(xa)n

成立。

该式称为 Taylor\rm TaylorTaylor 公式

该式最后一项 (f(n)(ξ)/n!)(x−a)n(f^{(n)}(\xi)/n!)(x - a)^n(f(n)(ξ)/n!)(xa)n 叫做 余项,并用 RnR_nRn 表示。

通常把介于 xxxaaa 之间的 ξ\xiξ 写为 ξ=a+θ(x−a),0<θ<1\xi = a + \theta(x-a),0<\theta<1ξ=a+θ(xa),0<θ<1 。因此,Taylor\rm TaylorTaylor 公式可写为:

f(x)=f(a)+f′(a)1!(x−a)+f′′(a)2!(x−a)2+⋯+f(n−1)(a)(n−1)!(x−a)n−1+Rn,Rn=f(n)(ξ)n!(x−a)n,ξ=a+θ(x−a),0<θ<1f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + R_n,\quad R_n=\frac{f^{(n)}(\xi)}{n!}(x-a)^n,\quad \xi=a+\theta(x-a),\quad 0 < \theta < 1f(x)=f(a)+1!f(a)(xa)+2!f(a)(xa)2++(n1)!f(n1)(a)(xa)n1+Rn,Rn=n!f(n)(ξ)(xa)n,ξ=a+θ(xa),0<θ<1

证明:

F(x)=Rn=f(x)−f(a)−∑k=1n−1f(k)(a)k!(x−a)kF(x)=R_n=f(x)-f(a)-\sum_{k=1}^{n-1}\frac{f^{(k)}(a)}{k!}(x-a)^kF(x)=Rn=f(x)f(a)k=1n1k!f(k)(a)(xa)k

F(x)F(x)F(x) 可看作 xxx 的函数。则 F(x)F(x)F(x)III 上的 nnn 阶可微函数。当 m⩽km \leqslant kmk 时,

dmdxm((x−a)kk!)=(x−a)k−m(k−m)!\frac{d^m}{dx^m}\left(\frac{(x-a)^k}{k!}\right)=\frac{(x-a)^{k-m}}{(k-m)!}dxmdm(k!(xa)k)=(km)!(xa)km

所以,当 m⩽n−1m \leqslant n-1mn1 时,

F(m)(x)=f(m)(x)−f(m)(a)−f(m+1)(a)1!(x−a)−⋯−f(n−1)(a)(n−1−m)!(x−a)(n−1−m)F^{(m)}(x) = f^{(m)}(x) - f^{(m)}(a) - \frac{f^{(m+1)}(a)}{1!}(x-a) -\cdots -\frac{f^{(n-1)}(a)}{(n-1-m)!}(x-a)^{(n-1-m)}F(m)(x)=f(m)(x)f(m)(a)1!f(m+1)(a)(xa)(n1m)!f(n1)(a)(xa)(n1m)

从而

F(a)=F′(a)=F′′(a)=⋯=F(n−1)(a)=0F(a)=F'(a)=F''(a)=\cdots=F^{(n-1)}(a)=0F(a)=F(a)=F(a)==F(n1)(a)=0

因为 f(x)f(x)f(x) 是余项,所以只需证明 F(x)/(x−a)nF(x) / (x-a)^nF(x)/(xa)n 可表示为 f(n)(ξ)/n!f^{(n)}(\xi) / n!f(n)(ξ)/n! 即可。令 G(x)=(x−a)nG(x) = (x-a)^nG(x)=(xa)n ,则当 m⩽n−1m \leqslant n - 1mn1 时,

G(m)(x)=n(n−1)(n−m+1)(x−a)n−mG^{(m)}(x) = n(n - 1)(n-m+1)(x-a)^{n-m}G(m)(x)=n(n1)(nm+1)(xa)nm

m=nm = nm=n 时,G(n)(x)=n!G^{(n)}(x) = n!G(n)(x)=n!。所以,

G(a)=G′(a)=G′′(a)=⋯=G(n−1)(a)=0G(a) = G'(a) = G''(a) = \cdots = G^{(n-1)}(a) = 0G(a)=G(a)=G(a)==G(n1)(a)=0

如果 x≠ax \neq ax=a,那么

G(x)≠0,G′(x)≠0,⋯ ,G(n−1)(x)≠0G(x) \neq 0,\quad G'(x) \neq 0,\quad \cdots,\quad G^{(n-1)}(x) \neq 0G(x)=0,G(x)=0,,G(n1)(x)=0

于是,因为 a<xa < xa<xa>xa > xa>x 的情况下相同,故仅讨论 a<xa < xa<x 的情况。当 F(a)=G(a)=0,x≠aF(a) = G(a) = 0,x \neq aF(a)=G(a)=0,x=a 时,G′(x)≠0G'(x)\neq 0G(x)=0,所以根据 定理 1.61.61.6 ,存在 ξ1\xi_1ξ1 满足

F(x)G(x)=F(x)−F(a)G(x)−G(a)=F′(ξ1)G′(ξ1),a<ξ1<x\frac{F(x)}{G(x)}=\frac{F(x)-F(a)}{G(x)-G(a)}=\frac{F'(\xi_1)}{G'(\xi_1)},\quad a < \xi_1 < xG(x)F(x)=G(x)G(a)F(x)F(a)=G(ξ1)F(ξ1),a<ξ1<x

再由 定理 1.61.61.6 ,存在 ξ2\xi_2ξ2 满足

F′(ξ1)G′(ξ1)=F′(ξ1)−F′(a)G′(ξ1)−G′(a)=F′′(ξ2)G′′(ξ2),a<ξ2<ξ1\frac{F'(\xi_1)}{G'(\xi_1)}=\frac{F'(\xi_1)-F'(a)}{G'(\xi_1)-G'(a)}=\frac{F''(\xi_2)}{G''(\xi_2)},\quad a < \xi_2 < \xi_1G(ξ1)F(ξ1)=G(ξ1)G(a)F(ξ1)F(a)=G(ξ2)F(ξ2),a<ξ2<ξ1

同理,当 m=3,4,5,⋯ ,n−1m=3,4,5,\cdots,n-1m=3,4,5,,n1 时,存在 ξm\xi_mξm 使得

F(m−1)(ξm−1)G(m−1)(ξm−1)=F(m)(ξm)G(m)(ξm),a<ξm<ξm−1\frac{F^{(m-1)}(\xi_{m-1})}{G^{(m-1)}(\xi_{m-1})}=\frac{F^{(m)}(\xi_m)}{G^{(m)}(\xi_m)},\quad a < \xi_m < \xi_{m-1}G(m1)(ξm1)F(m1)(ξm1)=G(m)(ξm)F(m)(ξm),a<ξm<ξm1

成立。所以

F(x)G(x)=F(n−1)(ξn−1)G(n−1)(ξn−1),a<ξn−1<x\frac{F(x)}{G(x)} = \frac{F^{(n-1)}(\xi_{n-1})}{G^{(n-1)}(\xi_{n-1})},\quad a < \xi_{n-1} < xG(x)F(x)=G(n1)(ξn1)F(n1)(ξn1),a<ξn1<x

因为 F(n−1)(x)=f(n−1)(x)−f(n−1)(a),G(n−1)(x)=n!(x−a)F^{(n-1)}(x) = f^{(n-1)}(x)-f^{(n-1)}(a),G^{(n-1)}(x)=n!(x-a)F(n1)(x)=f(n1)(x)f(n1)(a),G(n1)(x)=n!(xa),所以,根据中值定理,存在 ξ\xiξ 满足

F(n−1)(ξn−1)G(n−1)(ξn−1)=f(n−1)(ξn−1)−f(n−1)(a)n!(ξn−1−a)=f(n)(ξ)n!\frac{F^{(n-1)}(\xi_{n-1})}{G^{(n-1)}(\xi_{n-1})}=\frac{f^{(n-1)}(\xi_{n-1})-f^{(n-1)}(a)}{n!(\xi_{n-1}-a)}=\frac{f^{(n)}(\xi)}{n!}G(n1)(ξn1)F(n1)(ξn1)=n!(ξn1a)f(n1)(ξn1)f(n1)(a)=n!f(n)(ξ)

F(x)(x−a)n=F(x)G(x)=f(n)n!,a<ξ<x\frac{F(x)}{(x-a)^n}=\frac{F(x)}{G(x)}=\frac{f^{(n)}}{n!},\quad a < \xi < x(xa)nF(x)=G(x)F(x)=n!f(n),a<ξ<x

总攻

定理 1.71.71.7 ,关于 xxx 的幂 xkx^kxkkkk 是自然数,因为 (d/dx)x=kxk−1( \mathrm{d}/\mathrm{d}x)x = kx^{k-1}(d/dx)x=kxk1,所以当 n⩽kn \leqslant knk

dndxn=k(k−1)(k−2)⋯(k−n+1)xk−n\frac{\mathrm{d}^n}{\mathrm{d}x^n} = k(k-1)(k-2)\cdots(k-n+1)x^{k-n}dxndn=k(k1)(k2)(kn+1)xkn

否则

dndxn=0\frac{\mathrm{d}^n}{\mathrm{d}x^n} = 0dxndn=0

总的来说,每一项的答案为

max⁡(0,a×∏i=kk−n+1i)\max{(0, a \times\prod_{i=k}^{k-n+1}i)}max(0,a×i=kkn+1i)

其中 kkk 为初始次数,nnn 为阶数,aaa 为初始系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值