[JSOI2009] 等差数列

这篇博客主要探讨如何利用线段树解决区间数据修改与查询的问题。作者首先介绍了如何通过维护差分序列简化问题,并提出了从后往前贪心的策略。接着,详细阐述了线段树节点的结构以及如何进行合并操作。在实现过程中,特别处理了区间状态的两种情况,并给出了完整的C++代码实现,包括插入、删除和查询操作。该博客对于理解和应用线段树解决实际问题具有指导意义。
摘要由CSDN通过智能技术生成

难度虚高。

看到修改 + 区间查询 , 不难想到 线段树

首先我们可以考虑维护 差分序列 而不是原序列。

那么一个等差数列长这个样子 : x y y y …

那么想到充分利用首项,考虑从后往前贪心,在一堆相同的后缀前面再塞一个不同的数。

那么怎么表示一个区间的状态呢 ? 我们发现只有两种情况。

  1. 前缀剩了 y y y …
  2. 不剩

剩余状态设计我们还要考虑是否挖掉右端点 (因为要抵消),需要用不同的 dp 值来存。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e5+5; 
//对于首位的情况特殊考虑 
int n,m,v[N],cf[N];
inline int read() {
	int x=0,f=1; char c=getchar();
	while(c<'0'||c>'9') {
		if(c=='-') f=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9') {
		x=(x<<1)+(x<<3)+c-'0';
		c=getchar();
	}
	return x*f;
}
struct node{
	int u,d; 
	int c[2],val[2];
	ll dat,vl,vr;
}t[N<<2];
node merge(node x,node y) {
	node z;
	z.dat=0;
	z.vl=x.vl,z.vr=y.vr;
	z.u=x.u,z.d=y.d;
	if(x.vr!=y.vl) {
		z.val[0]=y.val[0]+((y.c[0])?x.val[0]+1:x.val[1]);
		z.c[0]=x.c[y.c[0]^1];
		z.val[1]=y.val[1]+((y.c[1])?x.val[0]+1:x.val[1]);
		z.c[1]=x.c[y.c[1]^1];
	} 
	else {
		z.val[0]=y.val[0]+((y.c[0])?x.val[1]+1:x.val[1]);
		z.c[0]=x.c[1];
		z.val[1]=y.val[1]+((y.c[1])?x.val[1]+1:x.val[1]);
		z.c[1]=x.c[1];
	}
	return z;
}
void add(int p,ll dat) {
	t[p].dat+=dat,t[p].vl+=dat,t[p].vr+=dat;
}
void pushdown(int p) {
	add(p<<1,t[p].dat),add(p<<1|1,t[p].dat),t[p].dat=0;
}
void upd(int p,int l,int r,int ql,int qr,ll dat) {
//	printf("%d %d %d %d %lld\n",l,r,ql,qr,dat);
	if(ql>qr || qr < 1 || ql > n) return ;
	if(ql<=l&&r<=qr) {
		add(p,dat); return;
	}
	pushdown(p);
	int mid=(l+r)/2; 
	if(ql<=mid) upd(p<<1,l,mid,ql,qr,dat); 
	if(mid<qr) upd(p<<1|1,mid+1,r,ql,qr,dat); 
	t[p]=merge(t[p<<1],t[p<<1|1]);
}
void init(int p,int l) {
	t[p].u=t[p].d=l;
	t[p].vl=t[p].vr=cf[l];
	t[p].c[1]=1;
}
void build(int p,int l,int r) {
	if(l==r) {
		init(p,l); return;
	}
	int mid=(l+r)/2; 
	build(p<<1,l,mid);
	build(p<<1|1,mid+1,r);
	t[p]=merge(t[p<<1],t[p<<1|1]);
}
node qry(int p,int l,int r,int ql,int qr) {
	if(ql<=l&&r<=qr) return t[p];
	pushdown(p);
	int mid=(l+r)/2;
	if(qr<=mid) return qry(p<<1,l,mid,ql,qr);
	else if(mid<qr) return qry(p<<1|1,mid+1,r,ql,qr);
	else return merge(qry(p<<1,l,mid,ql,mid),qry(p<<1|1,mid+1,r,mid+1,qr));
}
char op[10];
int main() {
//	freopen("data.in","r",stdin);
	n=read();
	for(int i=1;i<=n;i++) v[i]=read();
	for(int i=1;i<=n;i++) cf[i]=v[i]-v[i-1];
	build(1,1,n);
	m=read();
	for(int i=1;i<=m;i++) {
		scanf("%s",op);
		if(op[0]=='A') {
			int l=read(),r=read();
			ll a=read(),b=read();
			upd(1,1,n,l,l,a);
			upd(1,1,n,l+1,r,b);
			upd(1,1,n,r+1,r+1,-(a+(r-l)*b));
		}
		else {
			int l=read(),r=read();
			node tmp=qry(1,1,n,l,r);
			printf("%d\n",r-l+1-tmp.val[1]);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值