数据结构-图

概念

「图 graph」是一种非线性数据结构,由「顶点 vertex」和「边 edge」组成。我们可以将图𝐺 抽象地表示为一组顶点 𝑉 和一组边 𝐸 的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。
𝑉 = {1, 2, 3, 4, 5}
𝐸 = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)}
𝐺 = {𝑉 , 𝐸}
如果将顶点看作节点,将边看作连接各个节点的引用(指针),我们就可以将图看作是一种从链表拓展而来的
数据结构。如下图所示, 相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高 ,从而更为复杂。

图常见类型与术语

1.类型

根据边是否具有方向,可分为下图所示的「无向图 undirected graph」和「有向图 directed graph」。
‧ 在无向图中,边表示两顶点之间的“双向”连接关系,例如微信或 QQ 中的“好友关系”。
‧ 在有向图中,边具有方向性,即
𝐴 → 𝐵 𝐴 ← 𝐵 两个方向的边是相互独立的,例如微博或抖音上 的“关注”与“被关注”关系。

根据所有顶点是否连通,可分为下图所示的「连通图 connected graph」和「非连通图 disconnectedgraph」。
‧ 对于连通图,从某个顶点出发,可以到达其余任意顶点。
‧ 对于非连通图,从某个顶点出发,至少有一个顶点无法到达。

我们还可以为边添加“权重”变量,从而得到下图所示的「有权图 weighted graph」。例如在王者荣耀等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。

2.常见术语

图数据结构包含以下常用术语。
‧「邻接 adjacency」:当两顶点之间存在边相连时,称这两顶点“邻接”。在上图中,顶点 1 的邻接顶点为顶点 2、3、5。
‧「路径 path」:从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在上图  中,边序列 1‑5‑2‑4 是顶点 1 到顶点 4 的一条路径。
‧「度 degree」:一个顶点拥有的边数。对于有向图,「入度 In‑Degree」表示有多少条边指向该顶点,「出度 Out‑Degree」表示有多少条边从该顶点指出。

3.图的表示

图的常用表示方式包括“邻接矩阵”和“邻接表”。以下使用无向图进行举例。

1. 邻接矩阵

设图的顶点数量为 𝑛 ,「邻接矩阵 adjacency matrix」使用一个 𝑛 × 𝑛 大小的矩阵来表示图,每一行(列) 代表一个顶点,矩阵元素代表边,用1 或 0 表示两个顶点之间是否存在边。
如下图所示,设邻接矩阵为 𝑀、顶点列表为 𝑉 ,那么矩阵元素 𝑀[𝑖, 𝑗] = 1 表示顶点 𝑉 [𝑖] 到顶点 𝑉 [𝑗]之间存在边,反之M[i,j]=0表示两顶点之间不存在边

邻接矩阵具有以下特性。
‧ 顶点不能与自身相连,因此邻接矩阵主对角线元素没有意义
‧ 对于无向图,两个方向的边等价,此时邻接矩阵关于主对角线对称。
‧ 将邻接矩阵的元素从1 和 0 替换为权重,则可表示有权图。
使用邻接矩阵表示图时,我们可以直接访问矩阵元素以获取边,因此增删查操作的效率很高,时间复杂度均 为 𝑂(1) 。然而,矩阵的空间复杂度为 𝑂(𝑛 2 ) ,内存占用较多。

2. 邻接表

「邻接表 adjacency list」使用 𝑛 个链表来表示图,链表节点表示顶点。第 𝑖 条链表对应顶点 𝑖 ,其中存储了
该顶点的所有邻接顶点(即与该顶点相连的顶点)。图 9‑6 展示了一个使用邻接表存储的图的示例。

4.图的常见应用

现实生活中常见的图
顶点        
图计算问题
社交网络
用户
好友关系
潜在好友推荐
地铁线路
站点
站点间的连通性
最短路线推荐
太阳系
星体
星体间的万有引力作用
行星轨道计算

5.图基础操作

图的基础操作可分为对“边”的操作和对“顶点”的操作。在“邻接矩阵”和“邻接表”两种表示方法下,实
现方式有所不同。

5.1基于邻接矩阵的实现

给定一个顶点数量为 𝑛 的无向图,则各种操作的实现方式如下图所示。
添加或删除边 :直接在邻接矩阵中修改指定的边即可,使用 𝑂(1) 时间。而由于是无向图,因此需要同
时更新两个方向的边。
添加顶点 :在邻接矩阵的尾部添加一行一列,并全部填 0 即可,使用 𝑂(𝑛) 时间。
删除顶点 :在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将 (𝑛 − 1) 2 个元素
“向左上移动”,从而使用 𝑂(𝑛 2 ) 时间。
初始化 :传入 𝑛 个顶点,初始化长度为 𝑛 的顶点列表 vertices ,使用 𝑂(𝑛) 时间;初始化 𝑛 × 𝑛
小的邻接矩阵 adjMat ,使用 𝑂(𝑛 2 ) 时间。

package com.syctest.test1.test.model;

import java.util.ArrayList;
import java.util.List;

public class GraphAdjMat {
    List<Integer> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
    List<List<Integer>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”

    /* 构造方法 */
    public GraphAdjMat(int[] vertices, int[][] edges) {
        this.vertices = new ArrayList<>();
        this.adjMat = new ArrayList<>();
        // 添加顶点
        for (int val : vertices) {
            addVertex(val);
        }
        // 添加边
        // 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
        //假设有五个顶点,顺序为:13254,此时edges二维数组长这样:
//        int[][] edges = {
//                {0, 2},  // 1连接2
//                {0, 3},  // 1连接5
//                {3, 2},  // 5连接2
//                {4, 2},  // 4连接2
//                {2, 1},  // 2连接3
//                {2, 0},  // 2连接1
//                {2, 3},  // 2连接5
//                {2, 4},  // 2连接4
//                {1, 2}   // 3连接2
//        };
        for (int[] e : edges) {
            addEdge(e[0], e[1]);
        }
    }

    /* 获取顶点数量 */
    public int size() {
        return vertices.size();
    }

    /* 添加顶点 */
    //创建出这样一个邻接矩阵
//    [0, 0, 0]
//    [0, 0, 0]
//    [0, 0, 0]
    public void addVertex(int val) {
        int n = size();

        // 向顶点列表中添加新顶点的值
        vertices.add(val);

        // 在邻接矩阵中添加一行
        List<Integer> newRow = new ArrayList<>(n);//创建初始容量为1的集合
        for (int j = 0; j < n; j++) {
            newRow.add(0);
        }
        //邻接矩阵添加一行
        adjMat.add(newRow);
        // 在邻接矩阵中添加一列
        for (List<Integer> row : adjMat) {
            row.add(0);
        }
    }

    /* 删除顶点 */
    public void removeVertex(int index) {
        if (index >= size())
            throw new IndexOutOfBoundsException();
        // 在顶点列表中移除索引 index 的顶点
        vertices.remove(index);
        // 在邻接矩阵中删除索引 index 的行
        adjMat.remove(index);
        // 在邻接矩阵中删除索引 index 的列
        for (List<Integer> row : adjMat) {
            row.remove(index);
        }
    }

    /* 添加边 */
    // 参数 i, j 对应 vertices 元素索引
    public void addEdge(int i, int j) {
        // 索引越界与相等处理
        if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
            throw new IndexOutOfBoundsException();
        // 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i),也就是顶点自己不可能跟顶点自己连接
        adjMat.get(i).set(j, 1);
        adjMat.get(j).set(i, 1);
    }

    /* 删除边 */
    // 参数 i, j 对应 vertices 元素索引
    public void removeEdge(int i, int j) {
        // 索引越界与相等处理
        if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
            throw new IndexOutOfBoundsException();
        adjMat.get(i).set(j, 0);
        adjMat.get(j).set(i, 0);
    }

    /* 打印邻接矩阵 */
    public void print() {
        System.out.print(" 顶点列表 = ");
        System.out.println(vertices);
        System.out.println(" 邻接矩阵 =");
//        PrintUtil.printMatrix(adjMat);
    }
}

5.2基于邻接表的实现

设无向图的顶点总数为 𝑛 、边总数为 𝑚 ,则可根据下图所示的方法实现各种操作。
添加边 :在顶点对应链表的末尾添加边即可,使用 𝑂(1) 时间。因为是无向图,所以需要同时添加两个 方向的边。
删除边 :在顶点对应链表中查找并删除指定边,使用 𝑂(𝑚) 时间。在无向图中,需要同时删除两个方 向的边。
添加顶点 :在邻接表中添加一个链表,并将新增顶点作为链表头节点,使用 𝑂(1) 时间。
删除顶点 :需遍历整个邻接表,删除包含指定顶点的所有边,使用 𝑂(𝑛 + 𝑚) 时间。
初始化 :在邻接表中创建 𝑛 个顶点和 2𝑚 条边,使用 𝑂(𝑛 + 𝑚) 时间。

以下是邻接表的代码实现。
‧ 为了方便添加与删除顶点,以及简化代码,我们使用列表(动态数组)来代替链表。
‧ 使用哈希表来存储邻接表, key 为顶点实例, value 为该顶点的邻接顶点列表(链表)。
另外,我们在邻接表中使用 Vertex 类来表示顶点,这样做的原因是:如果与邻接矩阵一样,用列表索引来区 分不同顶点,那么假设要删除索引为 𝑖 的顶点,则需遍历整个邻接表,将所有大于 𝑖 的索引全部减 1 ,效率 很低。而如果每个顶点都是唯一的 Vertex 实例,删除某一顶点之后就无须改动其他顶点了

package com.syctest.test1.test.model;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class GraphAdjList {
    // 邻接表,key: 顶点,value:该顶点的所有邻接顶点
    Map<Vertex, List<Vertex>> adjList;

    /* 构造方法 */
    public GraphAdjList(Vertex[][] edges) {
        this.adjList = new HashMap<>();
        // 添加所有顶点和边
        for (Vertex[] edge : edges) {
            addVertex(edge[0]);
            addVertex(edge[1]);
            addEdge(edge[0], edge[1]);
        }
    }

    /* 获取顶点数量 */
    public int size() {
        return adjList.size();
    }

    /* 添加边 */
    public void addEdge(Vertex vet1, Vertex vet2) {
        if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
            throw new IllegalArgumentException();
        // 添加边 vet1 - vet2
        adjList.get(vet1).add(vet2);
        adjList.get(vet2).add(vet1);
    }

    /* 删除边 */
    public void removeEdge(Vertex vet1, Vertex vet2) {
        if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
            throw new IllegalArgumentException();
        // 删除边 vet1 - vet2
        adjList.get(vet1).remove(vet2);
        adjList.get(vet2).remove(vet1);
    }

    /* 添加顶点 */
    public void addVertex(Vertex vet) {
        if (adjList.containsKey(vet))
            return;
        // 在邻接表中添加一个新链表
        adjList.put(vet, new ArrayList<>());
    }

    /* 删除顶点 */
    public void removeVertex(Vertex vet) {
        if (!adjList.containsKey(vet))
            throw new IllegalArgumentException();
        // 在邻接表中删除顶点 vet 对应的链表
        adjList.remove(vet);
        // 遍历其他顶点的链表,删除所有包含 vet 的边
        for (List<Vertex> list : adjList.values()) {
            list.remove(vet);
        }
    }

    /* 打印邻接表 */
    public void print() {
        System.out.println(" 邻接表 =");
        for (Map.Entry<Vertex, List<Vertex>> pair : adjList.entrySet()) {
            List<Integer> tmp = new ArrayList<>();
            for (Vertex vertex : pair.getValue())
                tmp.add(vertex.val);
            System.out.println(pair.getKey().val + ": " + tmp + ",");
        }
    }


}
package com.syctest.test1.test.model;

public class Vertex {

    int val;

    public Vertex(int val) {
        this.val = val;
    }
}

5.3效率对比

6.图的遍历

树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以 把树看作是图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例
图和树都需要应用搜索算法来实现遍历操作。图的遍历方式可分为两种:「广度优先遍历 breadth‑first traversal」和「深度优先遍历 depth‑first traversal」。它们也常被称为「广度优先搜索 breadth‑first search」 和「深度优先搜索 depth‑first search」,简称 BFS 和 DFS 。

6.1广度优先遍历

广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外
扩张 。如下图所示,从左上角顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接 顶点,以此类推,直至所有顶点访问完毕。

1. 算法实现
BFS 通常借助队列来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。
1. 将遍历起始顶点 startVet 加入队列,并开启循环。
2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
3. 循环步骤 2. ,直到所有顶点被访问完成后结束。
为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些节点已被访问。
 List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
        // 顶点遍历序列
        List<Vertex> res = new ArrayList<>();
        // 哈希表,用于记录已被访问过的顶点
        Set<Vertex> visited = new HashSet<>();
        visited.add(startVet);
        // 队列用于实现 BFS
        Queue<Vertex> que = new LinkedList<>();
        que.offer(startVet);
        // 以顶点 vet 为起点,循环直至访问完所有顶点
        while (!que.isEmpty()) {
            Vertex vet = que.poll(); // 队首顶点出队
            res.add(vet); // 记录访问顶点
            // 遍历该顶点的所有邻接顶点
            for (Vertex adjVet : graph.adjList.get(vet)) {
                if (visited.contains(adjVet))
                    continue; // 跳过已被访问过的顶点
                que.offer(adjVet); // 只入队未访问的顶点
                visited.add(adjVet); // 标记该顶点已被访问
            }
        }
        // 返回顶点遍历序列
        return res;
    }
代码相对抽象,建议对照下图来加深理解。

Q

广度优先遍历的序列是否唯一?
不唯一。广度优先遍历只要求按“由近及远”的顺序遍历, 而多个相同距离的顶点的遍历顺序
是允许被任意打乱的 。以图 9‑10 为例,顶点 1 3 的访问顺序可以交换、顶点 2 4 6 的访问顺序也可以任意交换。

6.2. 复杂度分析

时间复杂度: 所有顶点都会入队并出队一次,使用 𝑂(|𝑉 |) 时间;在遍历邻接顶点的过程中,由于是无向图,
因此所有边都会被访问 2 次,使用 𝑂(2|𝐸|) 时间;总体使用 𝑂(|𝑉 | + |𝐸|) 时间。
空间复杂度: 列表 res ,哈希表 visited ,队列 que 中的顶点数量最多为 |𝑉 | ,使用 𝑂(|𝑉 |) 空间。

6.3深度优先遍历

深度优先遍历是一种优先走到底、无路可走再回头的遍历方式 。如图 9‑11 所示,从左上角顶点出发,访问 当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。

1. 算法实现
这种“走到尽头再返回”的算法范式通常基于递归来实现。与广度优先遍历类似,在深度优先遍历中我们也需要借助一个哈希表 visited 来记录已被访问的顶点,以避免重复访问顶点。
 /* 深度优先遍历 DFS 辅助函数 */
    void dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {
        res.add(vet); // 记录访问顶点
        visited.add(vet); // 标记该顶点已被访问
        // 遍历该顶点的所有邻接顶点
        for (Vertex adjVet : graph.adjList.get(vet)) {
            if (visited.contains(adjVet))
                continue; // 跳过已被访问过的顶点
            // 递归访问邻接顶点
            dfs(graph, visited, res, adjVet);
        }
    }
    /* 深度优先遍历 DFS */
    // 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
    List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
        // 顶点遍历序列
        List<Vertex> res = new ArrayList<>();
        // 哈希表,用于记录已被访问过的顶点
        Set<Vertex> visited = new HashSet<>();
        dfs(graph, visited, res, startVet);
        return res;
    }
深度优先遍历的算法流程如图所示。
直虚线代表向下递推 ,表示开启了一个新的递归方法来访问新顶点。
曲虚线代表向上回溯 ,表示此递归方法已经返回,回溯到了开启此递归方法的位置。
为了加深理解,建议将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。

Q

深度优先遍历的序列是否唯一?
与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探 索都可以,即邻接顶点的顺序可以任意打乱,都是深度优先遍历。
以树的遍历为例,“根 右”、“左 右”、“左 根”分别对应前序、中
序、后序遍历,它们展示了三种不同的遍历优先级,然而这三者都属于深度优先遍历。
2. 复杂度分析
时间复杂度: 所有顶点都会被访问 1 次,使用 𝑂(|𝑉 |) 时间;所有边都会被访问 2 次,使用 𝑂(2|𝐸|) 时间; 总体使用 𝑂(|𝑉 | + |𝐸|) 时间。
空间复杂度: 列表 res ,哈希表 visited 顶点数量最多为 |𝑉 | ,递归深度最大为 |𝑉 | ,因此使用 𝑂(|𝑉 |) 空 间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值