layuimini框架实现点击菜单栏回到起始页 / 删除现有tab。window.location.href=""进行了页面跳转,再点击菜单栏是不会显示起始页,而是跳转后的页面,在miniTab.js文件中找到:listen方法。// 强制重新加载初始页面。在layui页面中,如果使用了。
layui数据表格横向滚动条不显示问题 * 设置滚动条轨道背景颜色 */background-color: #888;/* 设置滚动条滑块颜色 */border-radius: 5px;/* 设置滚动条滑块圆角 *///用来指定滚动条的样式,设置滚动条显示为内联元素。/* 设置滚动条滑块的样式 */使用的框架是layuimini,
SpringMVC项目添加日志功能(AOP实现)最简单版 最近项目新增一个功能,需要把用户的操作都记录到数据库,于是在实现功能之后在这里分享大家请根据自己的需求增减字段,然后将你的dao service serviceImpl controller创建好4.编写配置文件5.编写切面实现效果:
Java新特性,从8-最新 Lambda是一个匿名函数,我们可以把Lambda表达式理解为是一段可以传递的代码(将代码像数据一样进行传递)。可以写出更简洁、更灵活的代码。作为一种更紧凑的代码风格,使Java的语言表达能力得到了提升。示例上面的例子中,我们创建了一个函数式接口,它定义了一个接受两个整数参数并返回他们和的结果的操作。然后,我们使用Lambda表达式实现了该接口,计算两个数的和并输出结果。请注意,Lambda表达式的参数类型可以根据上下文推断,因此不需要显式声明参数类型。
IDEA常用快捷键 按一下路径点开:File->Settings->Editor->Live Templates。点击加号选择Live Template。然后就出现了我们的自定义模版。输入完成后点击ok即可。Ctrl + 删除键。Command +键。
算法之 贪心算法 贪心算法是一种优化问题的求解方法,其核心思想是在每一步选择中都采取当前状态下的最优策略,而不考虑全局最优解。贪心算法的基本思想是通过一系列局部最优选择,最终达到全局最优。贪心算法的关键在于贪心选择性质,即每一步都选择当前状态下的最优解,而不考虑对后续步骤的影响。这种局部最优的选择最终能够达到全局最优。贪心算法通常做出一次选择后就不再改变,没有回退的过程。因此,一旦做出的选择不符合最优解的性质,整体策略就可能失败。
算法之回溯算法 它的核心思想是从一个初始状态出发,暴力搜索所有可能的解决方案,当遇到正确的解则将其记录,直到找到解或者尝试了所有可能的选择都无法找到解为止。。在二叉树章节中,我们提到前序、中序和后序遍历都属于深度优先搜索。接下来,我们利用前序遍历构造一个回溯问题,逐步了解回溯算法的工作原理。给定一个二叉树,搜索并记录所有值为7的节点,请返回节点列表。对于此题,我们前序遍历这颗树,并判断当前节点的值是否为7,若是则将该节点的值加入到结果列表 res之中。相关过程实现如下图和以下代码所示。。
算法之分治算法 换句话说,将大问题分解为多个子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高?:快速排序是选取一个基准值,然后把数组分为两个子数组,一个子数组的元素比基准值小另一子数组的元素比基准值大,然后再对这两部分进行相同的划分操作,直至子数组只剩下一个元素。:桶排序的基本思想是将数据分散到多个桶,然后对每个桶内的元素进行排序,最后将各个桶的元素依次取出,从而得到一个有序数组。:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后再找出跨越两部分的最近点对。
算法之搜索算法 二分查找 binary search」是一种的高效搜索算法。它,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。给定一个长度为𝑛的数组nums,元素按从小到大的顺序排列,数组不包含重复元素。请查找 并返回元素 target在该数组中的索引。若数组不包含该元素,则返回−1。如下图所示,我们先初始化指针𝑖 = 0和𝑗 = 𝑛 − 1,分别指向数组首元素和尾元素,代表搜索区间[0, 𝑛 − 1]。请注意,中括号表示闭区间,其包含边界值本身。接下来,循环执行以下两步。
从通信协议到Netty RPC框架 在互联网技术里,有两件事最为重要,一个是TCP/IP协议,它是万物互联的事实标准;另一个是Linux操作系统,它是推动互联网技术走向繁荣的基石。在网络编程中最重要的模型便是OSI七层网络模型和TCP/IP四层网络模型。
数据结构-图 图 graph」是一种非线性数据结构,由「顶点 vertex」和「边 edge」组成。我们可以将图𝐺 抽象地表示为一组顶点 𝑉 和一组边𝐸的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。如果将顶点看作节点,将边看作连接各个节点的引用(指针),我们就可以将图看作是一种从链表拓展而来的数据结构。如下图所示,,从而更为复杂。,可分为下图所示的「无向图 undirected graph」和「有向图 directed graph」。
堆:学习笔记 1. 重点回顾‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。‧ 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。‧ 堆的常用操作及其对应的时间复杂度包括:元素入堆 𝑂(log𝑛)、堆顶元素出堆𝑂(log𝑛)和访问堆顶元素O(1)‧ 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。‧ 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。‧ 输入𝑛 个元素并建堆的时间复杂度可以优化至𝑂(𝑛),非常高效。
树:二叉树、AVL树 二叉树 binary tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的 分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含:值、左子节点引用、右子节点引用。每个节点都有两个引用(指针),分别指向「左子节点 left‑child node」和「右子节点 right‑child node」,该节点被称为这两个子节点的「父节点 parent node」。