灰色的专栏

太阳底下没有新鲜的事物!

第一章 引言

1.1 学习问题的标准描述(p2)

1)三个特征:任务的种类;衡量任务提高的标准;经验的来源


1.2.1 选择训练经验(p4)


1)训练经验能否为系统的决策提供直接或者间接的反馈

2)学习机器可以在多大程度上控制训练样例序列

3)训练样例能多好地表示实例分布,通过样例来衡量最终系统的性能P


1.3 机器学习的一些观点和问题(p10)

1)机器学习问题经常归结于搜索问题,即对一个非常大的假设空间进行搜索,以确定一个最佳的拟合观察到的数据和学习器已有知识的假设

 

1.5 小结(p12)

0)机器学习致力于研究建立能够根据经验自我提高处理性能的计算机程序

1)机器学习算法在很多领域被证明很有实用价值。如:分析治疗的结果;从图像库中识别人脸;生产控制;适应个人阅读兴趣的变化

2)一个完整的机器学习需要:一个明确的界定的任务;性能度量标准以;训练经验的来源

3)算法过程包含许多选择:训练经验的类型;学习的目标函数;该目标函数的表示形式;从训练集中学习目标函数的算法

4)学习过程即搜索的过程,搜索包含可能的假设空间,使得到的假设最符合已有的训练样例和其他预先约束和知识

 

(应该从开始就好好记忆和掌握好出现的所有概念,这本书的概念特别多,而且也不好理解!)

阅读更多
文章标签: 算法 任务
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭