SQL Server小知识:CheckPoint

前面说到Recovery Interval可以控制SQL Server在内存中保留多少被修改的数据。其实我们有一个问题没有讲。

那就是内存中被修改的数据写回到磁盘后,也就意味着磁盘中的数据版本和日志中的数据操作已经同步了。当然也就意味着如果这个时候系统崩溃了,SQL Server就不需要再恢复了。

不过如果真的这个时候崩溃了,那么SQL Server怎么知道这些日志操作的数据已经写到磁盘了呢,所以SQL Server还有一个概念。

这个概念就是CheckPoint。

当SQL Server将一些被修改过的数据(术语叫Dirty Data)写回到磁盘后(这个操作的术语叫Flush),SQL Server会在日志中留下一个标记,以表示这个标记前的数据已经都被写到磁盘中了,而这个标记就叫做CheckPoint。

因此我们可以这么说,CheckPoint代表着一次Flush操作。

SQL Server会在以下情况下触发CheckPoint,也就是进行Flush:

  • SQL Server在正常停止服务的时候
  • 日志中需要进行恢复的操作要花费超过Recovery Interval的时间时
  • SQL Server可用内存不足的情况下
  • 管理员手动递交CHECKPOINT命令的时候
  • 当日志文件中的数据超过70%

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/9079672/viewspace-418916/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/9079672/viewspace-418916/

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值