orb-slam2源码解读(一)——Frame类

Orb-slam2是slam界中一个非常优秀且著名的项目,关于该项目的解读网上资料较少,大都是对算法的整体构架和算法思路进行解读,本系列博客将会带你一点一滴地解读orb-slam2的源代码,在兼顾算法讲解的同时,更着重与代码的结构与实现细节。 这次就先从Frame类讲起。 Frame类: ...

2018-01-18 12:50:46

阅读数 1024

评论数 0

30分钟手把手带你入门TensorFlow——Mnist手写数字识别实战教程

Hello大家好,这一次睿老师将会带领大家实现mnist的手写数字识别,手把手教会你如何使用TensorFlow进行基本的操作。本次课程中,我会保持一贯的啰嗦风格,事无巨细地深入讲解每一个操作细节,为每一位读者提供最贴心的服务。 准备工作 安装TensorFlow我就不多说了,主要是mni...

2018-01-10 20:59:36

阅读数 28422

评论数 3

一文助你Ceres 入门——Ceres Solver新手向全攻略

Ceres solver 是谷歌开发的一款用于非线性优化的库,在谷歌的开源激光雷达slam项目cartographer中被大量使用。Ceres官网上的文档非常详细地介绍了其具体使用方法,相比于另外一个在slam中被广泛使用的图优化库G2O,ceres的文档可谓相当丰富详细(没有对比就没有伤害,主要...

2018-01-02 21:52:43

阅读数 12365

评论数 7

流形学习——《机器学习》笔记

流形学习的基本思想是将高维特征空间中的样本分布群“平铺”至一个低维空间,同时能保存原高维空间中样本点之间的局部位置相关信息。原空间中的样本分布可能及其扭曲,平铺之后将更有利于样本之间的距离度量,其距离将能更好地反映两个样本之间的相似性。原空间中相邻比较近的点可能不是同一类点,而相邻较远的点还有可能...

2017-12-27 17:29:13

阅读数 3111

评论数 0

特征选择与稀疏学习——《机器学习》笔记

模式识别问题中构建、训练分类器的过程中避不开数据预处理这个过程,而在数据预处理过程中,特征选择又尤其的重要,特征选取的好坏很大程度影响到最终分类的正确率上。不仅如此,在很多的分类问题中,原始数据的维度经常会过高,并且包含很多冗余的信息,造成所谓“维数灾难”。 子集搜索:子集搜索方式分为三类: 1...

2017-12-27 16:37:26

阅读数 401

评论数 0

主成分分析(PCA)的数学原理理解

以前草草地看过主成分分析的原理,一直没能好好从根上过一遍PCA的数学原理,最近抽空推了一遍PCA,这里把其原理具体说一说,本文尽量不涉及数学公式推导,尽量引导读者轻松的、感性地理解PCA的原理。主成分分析的总体思路主成分分析的总体思路是找出若干维度的特征中最具代表性的几个特征。这里的“最具代表性“...

2017-09-05 22:18:20

阅读数 799

评论数 0

hello!以后就在这里分享自己的学习进度和成果

以后就在这里分享自己的学习进度和成果,敬请期待。

2017-09-04 23:25:50

阅读数 175

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭