usaco 01串 Stringsobits

题目背景
考虑排好序的N(N<=31)位二进制数。
题目描述

他们是排列好的,而且包含所有长度为N且这个二进制数中1的位数的个数小于等于L(L<=N)的数。

你的任务是输出第i(1<=i<=长度为N的二进制数的个数)小的(注:题目这里表述不清,实际是,从最小的往大的数,数到第i个符合条件的,这个意思),长度为N,且1的位数的个数小于等于L的那个二进制数。

(例:100101中,N=6,含有位数为1的个数为3)。
输入输出格式
输入格式:

共一行,用空格分开的三个整数N,L,i。

输出格式:

共一行,输出满足条件的第i小的二进制数。

输入输出样例
输入样例#1:

5 3 19

输出样例#1:

10011

题解
动态规划,f[i][j] = f[i-1][j] + f[i-1][j-1]
f[i][j] f[i][j]表示长度为I的二进制数最多1的个数为j的数的个数。

#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<map>
#include<set>
#include<cstring>
#include<string>

using namespace std;

typedef long long LL;
const int maxn = 100 + 100;

LL n,l,t;
LL f[maxn][maxn];
//很容易发现,不论是哪一位,如果前面一样,
//那一位为1的话一定比那一位为0的大小大。

//所以,如果k>f[i-1][j]的话,第i位一定为1,
//之后k减去f[i-1][j],剩下的数重复该操作。
void solve()
{
    scanf("%lld%lld%lld",&n,&l,&t);
    for(int i =0;i<=n;i++) f[i][0]= f[0][i] = 1;
    for(int i =1;i<=n;i++)
    {
        for(int j =1;j<=n;j++)
        {
            f[i][j] = f[i-1][j]+f[i-1][j-1];
        }
    }
    for(int i =n;i>=1;i--)
    {
        if(t>f[i-1][l])
        {
            printf("1");
            t -=f[i-1][l];
            l--;
        }else
        {
            printf("0");
        }
    }
    printf("\n");
}
int main()
{
    solve();
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cquzhengdayday/article/details/52350138
文章标签: dp
个人分类: dp
上一篇USACO/stamps
下一篇NYOJ一笔画
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭