CMU 11-785 L09 Cascade-Correlation and Deep Learning

本文介绍了Cascade-Correlation算法,该算法从直接的输入/输出连接开始,逐步构建隐藏层,通过最大化候选单元输出与残差误差的匹配来训练权重。相比反向传播,Cascade-Correlation更快,因为它每次只训练一层权重,并且可以在不预先确定网络大小和拓扑的情况下构建深度网络。此外,由于旧特征检测器被冻结,因此适合增量式‘课程’训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cascade-Correlation Algorithm
  • Start with direct I/O connections only. No hidden units.
  • Train output-layer weights using BP or Quickprop.
  • If error is now acceptable, quit.
  • Else, Create one new hidden unit offline.
    • Create a pool of candidate units. Each gets all available inputs. Outputs are not yet connected to anything.
    • Train the incoming weights to maximize the match (covariance) between each unit’s output and the residual error:
    • When all are quiescent, tenure the winner and add it to active net. Kill all the other candidates.
  • Re-train output layer weights and repeat the cycle until done.

在这里插入图片描述

Why Is Backprop So Slow?
  • Moving Targets
    • All hidden units are being trained at once, changing the environment seen by the other units as they train.
  • Herd Effect
    • Each unit must find a distinct job – some component of the error to correct.
    • All units scramble for the most important jobs. No central authority or communication.
    • Once a job is taken, it disappears and units head for the next-best job, including the unit that took the best job.
    • This is a very inefficient way to assign a distinct useful job to each unit.
Advantages of Cascade Correlation
  • No need to guess size and topology of net in advance.
  • Can build deep nets with higher-order features.
  • Much faster than Backprop or Quickprop.
  • Trains just one layer of weights at a time (fast).
  • Works on smaller training sets (in some cases, at least).
  • Old feature detectors are frozen, not cannibalized, so good for incremental “curriculum” training.
  • Good for parallel implementation.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值