线性代数笔记14:范数与矩阵条件数

本文介绍向量范数、矩阵范数以及矩阵条件数。

向量范数

  1. 对于实向量x,下面给出几种常见的范数:

    • 1-范数:

      ||x||1=i=1n|xi|

    • 2-范数:

      ||x||2=(i=1n|xi|2)12=(xTx)12

    • -范数:

      ||x||=max1in|xi|

  2. 由此我们可以定义p-范数为:

    ||x||2=(i=1n|xi|p)1p,p1

矩阵范数

  1. 在以上基础上,实际使用的矩阵范数还满足一下相容性条件:

    ARn×n,xRn,||Ax||||A|| ||x||

  2. 定义矩阵的算子范数为,这衡量了线性变换中对x伸缩的最大倍数

    ||A||v=maxx0||Ax||v||x||v

  3. 矩阵A的算子范数为:

    • 1-范数:

      ||A||1=max1jni=1n|aij|

    • 2-范数:

      ||A||2=λmax(ATA)ATA

    • -范数:

      ||A||=max1inj=1n|aij|

矩阵条件数

矩阵条件数是衡量非奇异矩阵的敏感程度,也就是方程Ax=bΔAΔb的变化对矩阵的影响程度;我们不加证明的说明一下几个定理。

  1. 条件数定义:

    cond=||Δx||/||x||||Δb||/||b||

  2. A为非奇异矩阵,则矩阵的条件数为:

    cond(A)v=||A||v||A1||=maxx0||Ax||||x||/minx0||Ax||||x||

    矩阵的条件数为误差传递的上限,可衡量矩阵的敏感性

  3. 奇异矩阵的条件数为无穷大,因此cond(A)越大,越接近于奇异矩阵。

矩阵的谱半径

  1. 设矩阵ARn×n的特征值为λi,称ρA的谱半径:

    ρ(A)=max1in|λi|

  2. 谱半径的大小不超过任何一种算子范数。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/crazy_scott/article/details/79967629
个人分类: linear algebra
上一篇决策树原理及实现(一)--ID3算法及改进(C4.5)
下一篇线性代数笔记13:PageRank问题建模
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭