线性代数笔记14:范数与矩阵条件数

原创 2018年04月16日 22:19:31

本文介绍向量范数、矩阵范数以及矩阵条件数。

向量范数

  1. 对于实向量x,下面给出几种常见的范数:

    • 1-范数:

      ||x||1=i=1n|xi|

    • 2-范数:

      ||x||2=(i=1n|xi|2)12=(xTx)12

    • -范数:

      ||x||=max1in|xi|

  2. 由此我们可以定义p-范数为:

    ||x||2=(i=1n|xi|p)1p,p1

矩阵范数

  1. 在以上基础上,实际使用的矩阵范数还满足一下相容性条件:

    ARn×n,xRn,||Ax||||A|| ||x||

  2. 定义矩阵的算子范数为,这衡量了线性变换中对x伸缩的最大倍数

    ||A||v=maxx0||Ax||v||x||v

  3. 矩阵A的算子范数为:

    • 1-范数:

      ||A||1=max1jni=1n|aij|

    • 2-范数:

      ||A||2=λmax(ATA)ATA

    • -范数:

      ||A||=max1inj=1n|aij|

矩阵条件数

矩阵条件数是衡量非奇异矩阵的敏感程度,也就是方程Ax=bΔAΔb的变化对矩阵的影响程度;我们不加证明的说明一下几个定理。

  1. 条件数定义:

    cond=||Δx||/||x||||Δb||/||b||

  2. A为非奇异矩阵,则矩阵的条件数为:

    cond(A)v=||A||v||A1||=maxx0||Ax||||x||/minx0||Ax||||x||

    矩阵的条件数为误差传递的上限,可衡量矩阵的敏感性

  3. 奇异矩阵的条件数为无穷大,因此cond(A)越大,越接近于奇异矩阵。

矩阵的谱半径

  1. 设矩阵ARn×n的特征值为λi,称ρA的谱半径:

    ρ(A)=max1in|λi|

  2. 谱半径的大小不超过任何一种算子范数。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/crazy_scott/article/details/79967629

机器学习之矩阵

-
  • 1970年01月01日 08:00

矩阵范数/谱/条件数

一、向量和矩阵范数直观概念         在实数域中,数的大小和两个数之间的距离是通过绝对值来度量的。在解析几何中,向量的大小和两个向量之差的大小是“长度”和“距离”的概念来度量的。为了对矩阵运算...
  • porly
  • porly
  • 2012-08-17 09:59:16
  • 10759

matlab cond函数 矩阵的条件数

Cond(A)称作矩阵A的条件数,为矩阵A的范数与A的逆矩阵的范数的乘积 定义  在MATLAB中,计算矩阵A的3种条件数的函数是: (1) cond(A,1) 计算A的1—范数下的条件数。 (2)...
  • qq278672818
  • qq278672818
  • 2017-03-14 10:54:07
  • 475

Matlab与线性代数 -- 矩阵的条件数

本图文介绍了矩阵的条件数,以及Matlab中的求取方法。
  • LSGO_MYP
  • LSGO_MYP
  • 2016-12-27 16:24:46
  • 419

线性代数常用基本知识 (含向量和矩阵范数<Matrix or vector norm>)

1. 行列式 1.1 二阶行列式 1.2 三阶行列式
  • MyArrow
  • MyArrow
  • 2016-04-19 11:07:56
  • 10782

矩阵论基础知识5(病态矩阵与条件数 )

病态矩阵与条件数  1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,...
  • u011584941
  • u011584941
  • 2015-03-25 19:17:57
  • 4838

数值计算---求希尔伯特矩阵的条件数

这几天数值计算老师交给我们一个课程
  • z02110917
  • z02110917
  • 2014-04-11 00:39:31
  • 2556

条件数

条件数cond():矩阵的范数与矩阵的逆的范数是乘积; 在方程             AX=b; 中,若A的条件数比较大,则b的微小差异就可导致解X的很大变化,数值稳定性差(条件数反应了对误差的...
  • u012318021
  • u012318021
  • 2015-01-19 17:38:25
  • 240

矩阵的条件数(condition number)

从优化或者数值计算的角度来说,L2 范数有助于处理 condition number 不好的情况下矩阵求逆很困难的问题。 κ(A)=∥A∥∥A−1∥ \kappa(A)=\|A\|\|A^{-1}\|...
  • lanchunhui
  • lanchunhui
  • 2016-05-11 11:14:49
  • 8301

条件数(condition number)

In the field of numerical analysis, the condition number of a function with respect to an argument m...
  • adminabcd
  • adminabcd
  • 2015-06-24 11:13:34
  • 3905
收藏助手
不良信息举报
您举报文章:线性代数笔记14:范数与矩阵条件数
举报原因:
原因补充:

(最多只允许输入30个字)