深度学习框架Tensorflow学习(六)-----小错误引来的反思

import tensorflow as tf
import numpy as np
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1, out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weights)+biases

if activation_function==None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs

x_data =np.linspace(-1,1,300,dtype='float32')[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data =np.square(x_data)-0.5+noise

xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])

loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_data-prediction),reduction_indices=[1]))

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))


dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data type from the other input arguments.

**如果没有给定数据类型，返回数据的数据类型根据其他输入参数的数据类型来判断。

————————————————————————————————————