【SDOI2014】【BZOJ3534】重建

原创 2015年08月26日 08:51:25

Description

T国有N个城市,用若干双向道路连接。一对城市之间至多存在一条道路。
在一次洪水之后,一些道路受损无法通行。虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回。
辛运的是,此前T国政府调查过每条道路的强度,现在他们希望只利用这些信息估计灾情。具体地,给定每条道路在洪水后仍能通行的概率,请计算仍能通行的道路恰有N-1条,且能联通所有城市的概率。

Input

输入的第一行包含整数N。
接下来N行,每行N个实数,第i+l行,列的数G[i][j]表示城市i与j之
间仍有道路联通的概率。
输入保证G[i][j]=G[j][i],且G[i][j]=0;G[i][j]至多包含两位小数。

Output

输出一个任意位数的实数表示答案。
你的答案与标准答案相对误差不超过10^(-4)即视为正确。

Sample Input

3

0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

Sample Output

0.375

HINT

1 < N < =50

数据保证答案非零时,答案不小于10^-4

Source

Round 1 Day 2

看起来好像直接对输入的矩阵计算一下行列式的值就可以了…
可以个[哔——]!
根本不对!
做不出来题到处问:
这里写图片描述
这里写图片描述
这里写图片描述
哔——
最后找到了gty大哥的blog…
好详细真是感人至深QwQ
让我们来看看正确的姿势…
令矩阵里的元素P(i,j)=1P(i,j),记一个tmp=(1P(i,j))
计算新的矩阵的行列式的值再乘上这个tmp得到答案…
不明白为什么这样吧>_<
其实我也不是很明白…

我们似乎可以通过令G(i,j)=P(i,j)来得到答案。且慢!要知道这道题目对于一棵生成树来说,它的期望应该为(i,j)EP(i,j)(i,j)E(1P(i,j))G(i,j)=P(i,j)1P(i,j)|det(G)|tmp=(1P(i,j)),得到的即为正确答案。

所以就是这样(终于明白一些了)
要注意1P(i,j)有可能等于零,这时候要手动把它变成eps
以及P(i,j)P(j,i)乘一个就行了…别乘多了…

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 100
#define eps 1e-9
using namespace std;
int n;
double G[MAXN][MAXN];
double tmp=1;
double Gauss()
{
    double ret=1;
    for (int i=1;i<n;i++)
    {
        int now=i;
        for (int j=i+1;j<n;j++) now=fabs(G[now][i])<fabs(G[j][i])?j:now;
        if (now!=i)
            for (int j=1;j<n;j++)   swap(G[now][j],G[i][j]);
        for (int j=i+1;j<n;j++)     
        {
            double temp=G[j][i]/G[i][i];
            for (int k=i;k<n;k++)   G[j][k]-=G[i][k]*temp;
        }
        if (fabs(G[i][i])<eps)  return 0;
        ret*=G[i][i];
    }
    return fabs(ret)*tmp;
}
int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
        {
            scanf("%lf",&G[i][j]);
            double t=fabs(1-G[i][j])<eps?eps:1-G[i][j];
            if (i<j)    tmp*=t;
            G[i][j]/=t;
        }
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            if (i!=j)   G[i][i]-=G[i][j];
    printf("%.10f\n",Gauss());
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CreationAugust/article/details/47998133

BZOJ 3534 [Sdoi2014]重建

矩阵-树定理 + 概率挂题解呀:http://blog.csdn.net/iamzky/article/details/41317333这道题告诉我们:邻接矩阵中的的权可以不是1,而是其他权值,比如概...
  • ziqian2000
  • ziqian2000
  • 2017年02月02日 13:09
  • 657

【bzoj 3534】 [SDOI2014] 重建 - 基尔霍夫矩阵

题意:   给一个图,每条边有出现概率,求这个图恰好为一棵树的概率。   解法:   考虑Kirchhoff矩阵的意义。...
  • GEOTCBRL
  • GEOTCBRL
  • 2017年02月28日 13:42
  • 580

【SDOI2014】【BZOJ3534】重建

DescriptionT国有N个城市,用若干双向道路连接。一对城市之间至多存在一条道路。 在一次洪水之后,一些道路受损无法通行。虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回...
  • CreationAugust
  • CreationAugust
  • 2015年08月26日 08:51
  • 3853

[矩阵树定理] BZOJ 3534 [Sdoi2014]重建

这里有个奇怪的词条 变元矩阵-树定理 也就是说 基尔霍夫矩阵的任意一个代数余子式是所有生成树的边权积的和 我们直接会得出∑T∏e∈Tpe\sum_T \prod_{e\in T} p_e 但这样...
  • u014609452
  • u014609452
  • 2017年02月17日 21:45
  • 569

BZOJ 3534: [Sdoi2014]重建 矩阵树定理

3534: [Sdoi2014]重建 Time Limit: 10 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 804  Solved: 3...
  • BlackJack_
  • BlackJack_
  • 2017年07月07日 10:55
  • 356

BZOJ3534: [Sdoi2014]重建(变元矩阵树)

看了xehoth大佬的博客,%%%. https://blog.xehoth.cc/MatrixTree/#include using namespace std; inline int gcd(i...
  • qq_35649707
  • qq_35649707
  • 2017年09月26日 17:04
  • 134

【BZOJ】【P3533】【Sdoi2014】【向量集】【题解】【线段树+凸包+三分】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3533 显然答案一定在凸包上
  • u012732945
  • u012732945
  • 2014年10月14日 19:10
  • 1576

【BZOJ】【P3534】【Sdoi2014】【重建】【题解】【矩阵树定理】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3534
  • u012732945
  • u012732945
  • 2014年11月20日 19:27
  • 1657

【bzoj3532】[Sdoi2014]Lis 网络流退流

Description给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci。请删除若 干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案。 如果有多种方案,...
  • LOI_DQS
  • LOI_DQS
  • 2016年04月15日 22:01
  • 1248

[BZOJ3532][Sdoi2014]Lis && 最小字典序割

最小代价一看就是拆点最大流 问题在于如何求字典序的方案 如何判断一条边是否是割边是很容易的 只需要从u出发看是否能找到一条u到v的增广路,如果存在这样的一条路径 说明该边不是割边 那么我们按照C的...
  • shiyukun1998
  • shiyukun1998
  • 2015年04月26日 21:17
  • 985
收藏助手
不良信息举报
您举报文章:【SDOI2014】【BZOJ3534】重建
举报原因:
原因补充:

(最多只允许输入30个字)