#include<iostream>
#include<thread>
#include<vector>
#include <numeric>
#include<chrono>
template<typename Iterator,typename T>
struct accumulate_block {
void operator()(Iterator first, Iterator last, T& result)const {
result = std::accumulate(first, last, result);
}
};
template<typename Iterator,typename T>
T parallel_accumulate(Iterator first, Iterator last, T init) {
unsigned long const length = std::distance(first, last);
if (!length) {
return init;
}
//min_per_thread记录了每个线程至少处理的元素数量
unsigned long const min_per_thread = 25;
//记录了基于min_per_thread的最大线程数
unsigned long const max_threads = (length + min_per_thread - 1) / min_per_thread;
unsigned long hardware_threads = std::thread::hardware_concurrency();
//选择了实际使用的线程数,它不超过max_threads,也不超过系统的硬件线程数(如果 hardware_threads 不为0,则使用它;否则默认为2)。
unsigned long const num_threads = std::min(hardware_threads != 0 ? hardware_threads : 2, max_threads);
//block_size记录了每个线程应处理的元素数量
unsigned long const block_size = length / num_threads;
//resluts用于储存每个线程的计算结果
std::vector<T>results(num_threads);
//threads用于储存线程对象
std::vector<std::thread>threads(num_threads - 1);
Iterator block_start = first;
for (unsigned long i = 0; i < (num_threads - 1); i++) {
Iterator block_end = block_start;
std::advance(block_end, block_size);
threads[i] = std::thread(accumulate_block<Iterator, T>(), block_start, block_end, std::ref(results[i]));
block_start = block_end;
}
accumulate_block<Iterator, T>()(block_start, last, results.back());
for (auto& th : threads) {
th.join();
}
return std::accumulate(results.begin(), results.end(), init);
}
int main() {
std::vector<int> data(1000000, 1);
int result = parallel_accumulate(data.begin(), data.end(), 0);
std::cout << "Sum: " << result << std::endl;
int serial_result = std::accumulate(data.begin(), data.end(), 0);
std::cout << "Serial Sum: " << serial_result << std::endl;
if (result == serial_result) {
std::cout << "Parallel and serial results match!" << std::endl;
}
else {
std::cout << "Parallel and serial results do not match!" << std::endl;
}
return 0;
}
并行版的std::accumulate
最新推荐文章于 2025-01-19 21:15:10 发布