买卖股票的最佳时机II
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。在每一天,你可以决定是否购买和或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润 。
示例:
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。
解法:
1.动态规划
定义dp[i][0]表示第i天交易完之后手里没有股票的最大利润,dp[i][1]表示第i天交易完之后手里持有股票的最大利润。
当天交易后手里没有股票有两种情况,一种是当天未进行任何交易,此时利润为前天手中没有股票的利润;另一种是当天把股票卖了,此时利润为前天手中有股票的利润加上当天能卖的价格。即:
dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);
当天交易后手里有股票有两种情况,一种是当天没有任何交易,当天持有股票是前一天手里所持有的股票,另一种是当天买入股票,当天能买入股票,说明前一天没有股票。即:
dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
边界条件是第一天:
如果是买入:dp[0][1]=-prices[0];
如果没买:dp[0][0]=0;
public int maxProfit(int[] prices){
if(prices.length<2||prices==null){
return 0;
}
int len=prices.length;
int[][] dp=new int[len][2];
//初始条件
dp[0][
本文探讨了买卖股票的最佳时机问题,提供了解决方案的两种方法:动态规划和贪心算法。通过动态规划,利用两个变量分别记录持有股票和未持有股票时的最大利润。贪心算法则通过寻找股票价格上升时的最大值和最小值之差来累积最大利润。文章还优化了这两种算法的实现,以提高效率。
最低0.47元/天 解锁文章
513

被折叠的 条评论
为什么被折叠?



