# POJ 3641 Pseudoprime numbers 测试费马小定理伪素数

Pseudoprime numbers
 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6018 Accepted: 2407

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0


Sample Output

no
no
yes
no
yes
yes


Source

//384K	16MS
#include<stdio.h>
#include<math.h>
bool isprime(long long x)//判断x是不是素数，如果是素数，肯定不是伪素数
{
if(x==1||x==2)return true;
long long tmp=sqrt(x);
for(long long i=2;i<=tmp;i++)
if(x%i==0)return false;
return true;
}
long long quick_mod(long long a,long long b,long long m)//快速幂求a^b%m
{
long long ans=1;
while(b)
{
if(b&1){ans=(ans*a)%m;b--;}
b/=2;
a=a*a%m;
}
return ans;
}
int main()
{
long long p,a;
while(scanf("%lld%lld",&p,&a),p|a)
{
if(isprime(p)){printf("no\n");continue;}
long long mol=quick_mod(a,p,p);
if(mol==a%p)printf("yes\n");
else printf("no\n");
}
return 0;
}


©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客