# RSA

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1227    Accepted Submission(s): 892

Problem Description
RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

You can encrypt data with this method :

C = E(m) = me mod n

When you want to decrypt data, use this method :

M = D(c) = cd mod n

Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.

Input
Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks.

Output
For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.

Sample Input
101 103 7 11 7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239

Sample Output
I-LOVE-ACM.

RSA是一种加密工具，选择两个素数p，q，计算n=p*q，F(n)=(p-1)*(q-1)。选择一个整数e(1<e<F(n)),使得gcd(e,F(n))=1,e是公钥，计算d使得d*emod(Fn)=1modFn,如果解密的话使用如下方法：
M=D(c)=c^d mod n
c是一种ASCII的值，请把密文翻译成明文。

//0MS	228K
#include<stdio.h>
#include<math.h>
int p,q,e,l;
int exgcd(int A,int &x,int B,int &y)
{
int x1,y1,x0,y0;
x0=1;y0=0;
x1=0;y1=1;
int r=(A%B+B)%B;
int q=(A-r)/B;
x=0;y=1;
while(r)
{
x=x0-q*x1;
y=y0-q*y1;
x0=x1;
y0=y1;
x1=x;y1=y;
A=B;B=r;r=A%B;
q=(A-r)/B;
}
return B;
}
int multi(int a,int b,int m)//a*b%m
{
int ret=0;
while(b>0)
{
if(b&1)ret=(ret+a)%m;
b>>=1;
a=(a<<1)%m;
}
return ret;
}
int quick_mod(int a,int b,int m)//a^b%m
{
int ans=1;
a%=m;
while(b)
{
if(b&1)
{
ans=multi(ans,a,m);
b--;
}
b/=2;
a=multi(a,a,m);
}
return ans;
}
int main()
{
while(scanf("%d%d%d%d",&p,&q,&e,&l)!=EOF)
{
int n=p*q,d,x,y,a;
p=(p-1)*(q-1);
d=exgcd(e,x,p,y);//解线性同余方程e*x=b(mod p)
x=(x%(p/d)+p/d)%(p/d);//求最小的解x
for(int i=0;i<l;i++)
{
scanf("%d",&a);
printf("%c",quick_mod(a,x,n));
}
printf("\n");
}
return 0;
}