description
给定a,b,m,k,产生长度为k的数组,a1=a%m,ai=(ai-1+b)%m(i>1),将这k个数首尾相接形成一个新数,问这个数的f函数的值
‘’‘solution’’’
首先f(x)可以等价于询问x%9的值,由于10的幂模9都为1,x%9= ( ∑ ( a + b i ) % m ) (\sum{(a+bi)\%m})%9 (∑(a+bi)%m)
=
(
∑
a
+
b
i
−
⌊
a
+
b
i
m
⌋
∗
m
)
=(\sum{a+bi-\lfloor{\dfrac{a+bi}{m}}\rfloor*m})%9
=(∑a+bi−⌊ma+bi⌋∗m)
=
∑
a
+
b
i
%
9
−
(
m
∗
∑
⌊
a
+
b
i
m
⌋
)
%
9
=\sum{a+bi}\%9-(m*\sum{\lfloor{\dfrac{a+bi}{m}}\rfloor})\%9
=∑a+bi%9−(m∗∑⌊ma+bi⌋)%9
=
∑
a
+
b
i
%
9
−
(
m
∗
f
(
b
,
a
,
m
,
k
−
1
)
)
%
9
=\sum{a+bi}\%9-(m*f(b,a,m,k-1))\%9
=∑a+bi%9−(m∗f(b,a,m,k−1))%9
类
欧
几
里
得
推
导
:
f
(
a
,
b
,
c
,
n
)
=
∑
0
n
⌊
a
i
+
b
c
⌋
类欧几里得推导:f(a,b,c,n)=\sum^{n}_{0}{\lfloor{\dfrac{ai+b}{c}}\rfloor}
类欧几里得推导:f(a,b,c,n)=0∑n⌊cai+b⌋
当
a
=
0
时
:
当a=0时:
当a=0时:
f
(
a
,
b
,
c
,
n
)
=
⌊
b
/
c
⌋
∗
(
n
+
1
)
f(a,b,c,n)=\lfloor{b/c}\rfloor*(n+1)
f(a,b,c,n)=⌊b/c⌋∗(n+1)
当
a
>
=
c
或
b
>
=
c
时
:
当a>=c或b>=c时:
当a>=c或b>=c时:
f
(
a
,
b
,
c
,
n
)
=
∑
0
n
⌊
a
/
c
⌋
∗
i
+
⌊
b
/
c
⌋
+
⌊
a
%
c
∗
i
+
b
%
c
c
⌋
f(a,b,c,n)=\sum_{0}^{n}{\lfloor{a/c}\rfloor*i+\lfloor{b/c}\rfloor+\lfloor{\dfrac{a\%c*i+b\%c}{c}}\rfloor}
f(a,b,c,n)=0∑n⌊a/c⌋∗i+⌊b/c⌋+⌊ca%c∗i+b%c⌋
=
⌊
a
/
c
⌋
n
∗
(
n
+
1
)
/
2
+
⌊
b
/
c
⌋
∗
(
n
+
1
)
+
f
(
a
%
c
,
b
%
c
,
c
,
n
)
=\lfloor{a/c}\rfloor n*(n+1)/2+\lfloor{b/c}\rfloor*(n+1)+f(a\%c,b\%c,c,n)
=⌊a/c⌋n∗(n+1)/2+⌊b/c⌋∗(n+1)+f(a%c,b%c,c,n)
当
a
<
c
且
b
<
c
时
当a<c 且 b<c时
当a<c且b<c时
f
(
a
,
b
,
c
,
n
)
=
∑
i
=
0
n
∑
j
=
0
⌊
a
i
+
b
c
⌋
−
1
1
f(a,b,c,n)=\sum_{i=0}^{n}{\sum_{j=0}^{\lfloor{\dfrac{ai+b}{c}}\rfloor-1}1}
f(a,b,c,n)=i=0∑nj=0∑⌊cai+b⌋−11
=
∑
j
=
0
⌊
a
n
+
b
c
⌋
−
1
∑
i
=
0
n
1
(
j
<
⌊
a
i
+
b
c
⌋
)
=\sum_{j=0}^{\lfloor{\dfrac{an+b}{c}}\rfloor-1}{\sum_{i=0}^{n}1(j<\lfloor{\dfrac{ai+b}{c}}\rfloor)}
=j=0∑⌊can+b⌋−1i=0∑n1(j<⌊cai+b⌋)
=
∑
j
=
0
⌊
a
n
+
b
c
⌋
−
1
∑
i
=
0
n
1
(
j
<
⌈
a
i
+
b
−
c
+
1
c
⌉
)
=\sum_{j=0}^{\lfloor{\dfrac{an+b}{c}}\rfloor-1}{\sum_{i=0}^{n}1(j<\lceil{\dfrac{ai+b-c+1}{c}}\rceil)}
=j=0∑⌊can+b⌋−1i=0∑n1(j<⌈cai+b−c+1⌉)
=
∑
j
=
0
⌊
a
n
+
b
c
⌋
−
1
∑
i
=
0
n
1
(
i
>
⌊
c
j
−
b
+
c
−
1
a
⌋
)
=\sum_{j=0}^{\lfloor{\dfrac{an+b}{c}}\rfloor-1}{\sum_{i=0}^{n}1(i>\lfloor{\dfrac{cj-b+c-1}{a}}\rfloor)}
=j=0∑⌊can+b⌋−1i=0∑n1(i>⌊acj−b+c−1⌋)
=
∑
j
=
0
⌊
a
n
+
b
c
⌋
−
1
n
−
⌊
c
j
−
b
+
c
−
1
a
⌋
=\sum_{j=0}^{\lfloor{\dfrac{an+b}{c}}\rfloor-1}{n-\lfloor{\dfrac{cj-b+c-1}{a}}\rfloor}
=j=0∑⌊can+b⌋−1n−⌊acj−b+c−1⌋
=
n
∗
⌊
a
n
+
b
c
⌋
−
f
(
c
,
−
b
+
c
−
1
,
⌊
a
n
+
b
c
⌋
−
1
)
=n*\lfloor{\dfrac{an+b}{c}}\rfloor-f(c,-b+c-1,\lfloor{\dfrac{an+b}{c}}\rfloor-1)
=n∗⌊can+b⌋−f(c,−b+c−1,⌊can+b⌋−1)
同理可以求出
g
(
a
,
b
,
c
,
n
)
=
∑
i
∗
⌊
a
i
+
b
c
⌋
g(a,b,c,n)=\sum{i*\lfloor{\dfrac{ai+b}{c}}\rfloor}
g(a,b,c,n)=∑i∗⌊cai+b⌋
h
(
a
,
b
,
c
,
n
)
=
∑
⌊
a
i
+
b
c
⌋
2
h(a,b,c,n)=\sum{\lfloor{\dfrac{ai+b}{c}}\rfloor^2}
h(a,b,c,n)=∑⌊cai+b⌋2(平方这里需要有一个转换)
n
2
=
2
∗
∑
i
=
0
n
i
−
n
n^2=2*\sum_{i=0}^{n}i-n
n2=2∗∑i=0ni−n
#include<bits/stdc++.h>
#define LL long long
#define fo(i,a,b) for(LL i=a;i<=b;i++)
#define rp(i,a,b) for(LL i=a;i>=b;i--)
#define tr(t,x) for(LL t=first[x];t;t=nex[t])
using namespace std;
const LL mo=9;
LL n,m,i,t,j,k,l,x,y,z,a,b,ans,T;
LL sqr(LL n){
return n*(n+1)/2%mo;
}
LL f(LL a,LL b,LL c,LL n){
if (!a) return (b/c)*(n+1)%mo;
if (a>=c || b>=c) return (f(a%c,b%c,c,n)+sqr(n)*(a/c)+(n+1)*(b/c))%mo;
LL t=(a*n+b)/c;
return (t%mo*n%mo-f(c,c-b-1,a,t-1)+mo)%mo;
}
int main(){
//freopen("data.in","r",stdin);
scanf("%lld",&T);
while (T--){
scanf("%lld%lld%lld%lld",&a,&b,&m,&n);n--;
a%=m;b%=m;
if ((!n || ( n && !b)) && !a){
printf("0\n"); continue;
}
ans=a*(n+1)%mo+sqr(n)*b%mo-m*f(b,a,m,n)%mo;
ans=(ans+mo)%mo;
if (!ans) ans=9;
printf("%lld\n",ans);
}
}


被折叠的 条评论
为什么被折叠?



