聚类分析---基于中心的k-medoids

Cluster the following data set of ten objects into two clusters i.e. k = 2.

把下面10个数据对象分成2个簇

Consider a data set of ten objects as follows:

第一步:
我们假设c1=(3,4)c2=(7,4)是两个中心。

(2,6)到c1(3,4)的距离是3,(7,4)到c2(2,6)的距离是7,因此(2,6)和c1是一个簇。

按照同样的方法。得到:

Cluster1 = {(3,4)(2,6)(3,8)(4,7)}

Cluster2 = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}

 

Cost((3,4),(2,6))=|3-2|+|6-4|=3

第二步:

选择一个非中心点o’,我们假设o’=(7,3)

 

 

用同样的方法划分出两个簇:

然后再计算它总共的开销:

因此前面的那个选择更好。因此我们尝试了一些其他的非中心的点,发现我们的第一个选择是最好的。因此不会重新分配,算法停止。

 

 

阅读更多
个人分类: 数据挖掘
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

聚类分析---基于中心的k-medoids

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭