OpenSource的末日? (转)

OpenSource的末日? (转)[@more@]

Opensource的末日?
蓝森林 .NET.com">http://www.lslnet.com 2000年3月30日 09:18

 

  Olaf Beckman在Linux.com写了一篇文章,阐述为什么他认为 OPenSource和Linux都将成为过往云烟。

  这两年以来,随着Linux的声誉如日中天,公司只要跟Linux稍微沾上边,就可以在股票市场上不费吹灰之力的筹得数千万美元的资金。为什么投资人即使公司的获利还不知道在哪里就疯狂的投入成把的钞票? Beckman认为他们都期望能买到金母鸡,买到微软第二。

  软件公司的研发经费高的吓人,但是产品的制造成本相形之下低的不像话,公司想要赚钱,不但其产品要投消费者所好,还得成为市场的主宰,换句话说,“Go big,or go home”。但是Linux与其赖以立足的GPL却完全摧毁的这个公式。任何一家卖Linux Distribution的公司想要像微软一般大赚其钱,成为市场龙头是不可或缺的,但是在GPL的规范之下,不管是谁都能取得你的源代码,就是你的发展成果,换个名字在市场上用比你的价钱还低的多的价格打垮你。包括Red Hat在内,几乎所有的Distribution制造商都说提供服务将是其主要获利来源之一,不管是以短期或是长期的角度来看,这招都不可能让Red Hat变成微软第二。

  更而甚者,Beckman提出了一些可能发生,或是正在发生的事件,这些事件都有潜力使GPL和OpenSource慢慢成为历史:

GPL“残障化”
TurboLinux在最近推出企业版Linux ,但是在他们的网站中说源代码要两个月以后才能提供给公众取得。如果这种先例一开,或许以后我们要取得某某Linux的源代码得等上一百年(我一定会给,只是不是现在),这种商业手段将会使GPL形同虚设。
OpenSource软件的可靠度
在美国,软件制造商被法律要求必须对软件的可靠性负责,但是在GPL之下,谁该负责变成一个模糊地带。有朝一日使用者因为Linux导致的损失向法院其起诉讼时,光是谁该负责就扯不清。如果美国法院因此判定GPL违法而禁止在美国本土使用,不正是判了Linux死刑?
“以小制大”的版权战术
既然Linux本身是受到GPL保护的,或许某些厂商会想出下面的招数:在光盘中夹带一两个版权软件,藉着这一两个版权软件的版权保护让整张光盘变成不得任意复制,还可以学微软每一个新版本都改一点点让旧的程序与新的不兼容,使用者自然每一版都得买。
微软出马,控告KDE
或许当微软看到新的KDE2与windows有多相似的时候(或者说,有一些相似就够了)微软就有足够的理由可以控告KDE团队侵犯微软Windows的视觉设计。虽然微软不见得会赢,不过以此事涉软件设计的官司都缠讼经年的情况来看,用这招拖住KDE一两年大概不是问题。
  在Linux.com这种Linux的大本营里公然向Linux/OpenSource的未来性挑战,当然会引来极大的回响(或者说攻击),发泄不满者有之,滔滔大论予以反击者亦有之,简直就比原文还精彩。不过,作者所提到的几项事件却是蛮值得思考的。

  对照国内数家Linux公司的所作所为,嘴巴上说要“开放源码,开放心胸”,但实际上为了不让竞争对手轻易取得自己版本的源码,进而超过自己,却任是一意孤行,一意违反GPL,不公开源代码,或者就像这篇文章所说的一样,等我愿意公开源码,我才会公开源码,你就等着吧,或者仅仅只是在站点上或所卖的光盘里公开“.src.rpm”文件,却不是可以自行编译的“tar.gz”文件,按照这些国内的Linux公司的逻辑,GPL是他们自己来定的游戏规则。会不会有一天我们真的在网站上读到似曾相似的消息呢?中国Linux/open source的发展前景,实在是令人担忧呀!想一阅原文的人请按这里。
 


来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/10752043/viewspace-987964/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/10752043/viewspace-987964/

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值