Java常用排序算法/程序员必须掌握的8大排序算法

分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序

不稳定:快速排序,希尔排序,堆排序。


// 排序原始数据  
int[] a =  {49, 38, 65, 97, 76, 13, 27, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51};  

1. 直接插入排序

基本思想:假设待排序的数据是数组A[1….n]。初始时,A[1]自成1个有序区,无序区为A[2….n]。在排序的过程中,依次将A[i] (i=2,3,….,n)从后往前插入到前面已排好序的子数组A[1,…,i-1]中的适当位置,当所有的A[i] 插入完毕,数组A中就包含了已排好序的输出序列。

public class InsertDemo {
	public static void insertSort(int[] a) {

		for (int i = 1; i < a.length; i++) {
			int temp = a[i];
			int j;
			for (j = i - 1; j >= 0; j--) {
				//将大于temp的值整体后移一个单位
				if (a[j] > temp) {
					a[j + 1] = a[j];
				} else {
					break;
				}
			}
			a[j + 1] = temp;
		}

		System.out.println(Arrays.toString(a));
	}

	public static void insertSort2(int[] a) {
		for (int i = 1; i < a.length; i++) {
			int temp = a[i];
			int j;
			for (j = i - 1; j >= 0 && a[j] > temp; j--) {
				//将大于temp的值整体后移一个单位
				a[j + 1] = a[j];
			}
			a[j + 1] = temp;
		}
		System.out.println(Arrays.toString(a));
	}

	public static void main(String[] args) {
		int[] a = {82, 3, 14, 8, 5, 32, 47, 64, 37, 61, 89};
		insertSort2(a);
	}
}

2. 希尔排序

3. 简单选择排序

基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

public static void selectSort(int[] array) {  
    int position = 0;  
    for (int i = 0; i < array.length; i++) {  
        int j = i + 1;  
        position = i;  
        int temp = array[i];  
        for (; j < array.length; j++) {  
            if (array[j] < temp) {  
                temp = array[j];  
                position = j;  
            }  
        }  
        array[position] = array[i];  
        array[i] = temp;  
    }  
    System.out.println(Arrays.toString(array) + " selectSort");  
} 

4. 堆排序

基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
建堆:


交换,从堆中踢出最大数


剩余结点再建堆,再交换踢出最大数


依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

public static void heapSort(int[] array) {  
    /* 
     *  第一步:将数组堆化 
     *  beginIndex = 第一个非叶子节点。 
     *  从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。 
     *  叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。 
     */  
    int len = array.length - 1;  
    int beginIndex = (len - 1) >> 1;  
    for (int i = beginIndex; i >= 0; i--) {  
        maxHeapify(i, len, array);  
    }  
    /* 
     * 第二步:对堆化数据排序 
     * 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。 
     * 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。 
     * 直至未排序的堆长度为 0。 
     */  
    for (int i = len; i > 0; i--) {  
        swap(0, i, array);  
        maxHeapify(0, i - 1, array);  
    }  
    System.out.println(Arrays.toString(array) + " heapSort");  
}  
private static void swap(int i, int j, int[] arr) {  
    int temp = arr[i];  
    arr[i] = arr[j];  
    arr[j] = temp;  
}  
/** 
 * 调整索引为 index 处的数据,使其符合堆的特性。 
 * 
 * @param index 需要堆化处理的数据的索引 
 * @param len   未排序的堆(数组)的长度 
 */  
private static void maxHeapify(int index, int len, int[] arr) {  
    int li = (index << 1) + 1; // 左子节点索引  
    int ri = li + 1;           // 右子节点索引  
    int cMax = li;             // 子节点值最大索引,默认左子节点。  
    if (li > len) {  
        return;       // 左子节点索引超出计算范围,直接返回。  
    }  
    if (ri <= len && arr[ri] > arr[li]) // 先判断左右子节点,哪个较大。  
    { cMax = ri; }  
    if (arr[cMax] > arr[index]) {  
        swap(cMax, index, arr);      // 如果父节点被子节点调换,  
        maxHeapify(cMax, len, arr);  // 则需要继续判断换下后的父节点是否符合堆的特性。  
    }  
}  

5. 冒泡排序

基本思想:冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。


public static void bubbleSort(int[] array) {  
    int temp = 0;  
    for (int i = 0; i < array.length - 1; i++) {  
        for (int j = 0; j < array.length - 1 - i; j++) {  
            if (array[j] > array[j + 1]) {  
                temp = array[j];  
                array[j] = array[j + 1];  
                array[j + 1] = temp;  
            }  
        }  
    }  
    System.out.println(Arrays.toString(array) + " bubbleSort");  
} 

外层循环,i的增长,有两个用处。1.用于控制排序的趟数;2.用于控制内层循环,每次排序的尾部在何处结束。

6. 快速排序

算法思想:基于分治的思想,是冒泡排序的改进型。

http://blog.csdn.net/csdn_kenneth/article/details/79161152

7、归并排序

基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

public static void mergingSort(int[] array) {  
    sort(array, 0, array.length - 1);  
    System.out.println(Arrays.toString(array) + " mergingSort");  
}  
  
private static void sort(int[] data, int left, int right) {  
    if (left < right) {  
        //找出中间索引  
        int center = (left + right) / 2;  
        //对左边数组进行递归  
        sort(data, left, center);  
        //对右边数组进行递归  
        sort(data, center + 1, right);  
        //合并  
        merge(data, left, center, right);  
    }  
}  
  
private static void merge(int[] data, int left, int center, int right) {  
    int[] tmpArr = new int[data.length];  
    int mid = center + 1;  
    //third记录中间数组的索引  
    int third = left;  
    int tmp = left;  
    while (left <= center && mid <= right) {  
        //从两个数组中取出最小的放入中间数组  
        if (data[left] <= data[mid]) {  
            tmpArr[third++] = data[left++];  
        } else {  
            tmpArr[third++] = data[mid++];  
        }  
    }  
  
    //剩余部分依次放入中间数组  
    while (mid <= right) {  
        tmpArr[third++] = data[mid++];  
    }  
  
    while (left <= center) {  
        tmpArr[third++] = data[left++];  
    }  
  
    //将中间数组中的内容复制回原数组  
    while (tmp <= right) {  
        data[tmp] = tmpArr[tmp++];  
    }  
}  

8、基数排序

基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

public static void radixSort(int[] array) {  
    //首先确定排序的趟数;  
    int max = array[0];  
    for (int i = 1; i < array.length; i++) {  
        if (array[i] > max) {  
            max = array[i];  
        }  
    }  
    int time = 0;  
    //判断位数;  
    while (max > 0) {  
        max /= 10;  
        time++;  
    }  
  
    //建立10个队列;  
    ArrayList<ArrayList<Integer>> queue = new ArrayList<>();  
    for (int i = 0; i < 10; i++) {  
        ArrayList<Integer> queue1 = new ArrayList<>();  
        queue.add(queue1);  
    }  
  
    //进行time次分配和收集;  
    for (int i = 0; i < time; i++) {  
        //分配数组元素;  
        for (int anArray : array) {  
            //得到数字的第time+1位数;  
            int x = anArray % (int)Math.pow(10, i + 1) / (int)Math.pow(10, i);  
            ArrayList<Integer> queue2 = queue.get(x);  
            queue2.add(anArray);  
            queue.set(x, queue2);  
        }  
        int count = 0;//元素计数器;  
        //收集队列元素;  
        for (int k = 0; k < 10; k++) {  
            while (queue.get(k).size() > 0) {  
                ArrayList<Integer> queue3 = queue.get(k);  
                array[count] = queue3.get(0);  
                queue3.remove(0);  
                count++;  
            }  
        }  
    }  
    System.out.println(Arrays.toString(array) + " radixSort");  
}  
结果:


转自:http://blog.csdn.net/qy1387/article/details/7752973

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值