分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
建堆:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
// 排序原始数据
int[] a = {49, 38, 65, 97, 76, 13, 27, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51};
1. 直接插入排序
基本思想:假设待排序的数据是数组A[1….n]。初始时,A[1]自成1个有序区,无序区为A[2….n]。在排序的过程中,依次将A[i] (i=2,3,….,n)从后往前插入到前面已排好序的子数组A[1,…,i-1]中的适当位置,当所有的A[i] 插入完毕,数组A中就包含了已排好序的输出序列。public class InsertDemo {
public static void insertSort(int[] a) {
for (int i = 1; i < a.length; i++) {
int temp = a[i];
int j;
for (j = i - 1; j >= 0; j--) {
//将大于temp的值整体后移一个单位
if (a[j] > temp) {
a[j + 1] = a[j];
} else {
break;
}
}
a[j + 1] = temp;
}
System.out.println(Arrays.toString(a));
}
public static void insertSort2(int[] a) {
for (int i = 1; i < a.length; i++) {
int temp = a[i];
int j;
for (j = i - 1; j >= 0 && a[j] > temp; j--) {
//将大于temp的值整体后移一个单位
a[j + 1] = a[j];
}
a[j + 1] = temp;
}
System.out.println(Arrays.toString(a));
}
public static void main(String[] args) {
int[] a = {82, 3, 14, 8, 5, 32, 47, 64, 37, 61, 89};
insertSort2(a);
}
}
2. 希尔排序
3. 简单选择排序
基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
public static void selectSort(int[] array) {
int position = 0;
for (int i = 0; i < array.length; i++) {
int j = i + 1;
position = i;
int temp = array[i];
for (; j < array.length; j++) {
if (array[j] < temp) {
temp = array[j];
position = j;
}
}
array[position] = array[i];
array[i] = temp;
}
System.out.println(Arrays.toString(array) + " selectSort");
}
4. 堆排序
基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
建堆:
交换,从堆中踢出最大数
剩余结点再建堆,再交换踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
public static void heapSort(int[] array) {
/*
* 第一步:将数组堆化
* beginIndex = 第一个非叶子节点。
* 从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
* 叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
*/
int len = array.length - 1;
int beginIndex = (len - 1) >> 1;
for (int i = beginIndex; i >= 0; i--) {
maxHeapify(i, len, array);
}
/*
* 第二步:对堆化数据排序
* 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
* 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
* 直至未排序的堆长度为 0。
*/
for (int i = len; i > 0; i--) {
swap(0, i, array);
maxHeapify(0, i - 1, array);
}
System.out.println(Arrays.toString(array) + " heapSort");
}
private static void swap(int i, int j, int[] arr) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
/**
* 调整索引为 index 处的数据,使其符合堆的特性。
*
* @param index 需要堆化处理的数据的索引
* @param len 未排序的堆(数组)的长度
*/
private static void maxHeapify(int index, int len, int[] arr) {
int li = (index << 1) + 1; // 左子节点索引
int ri = li + 1; // 右子节点索引
int cMax = li; // 子节点值最大索引,默认左子节点。
if (li > len) {
return; // 左子节点索引超出计算范围,直接返回。
}
if (ri <= len && arr[ri] > arr[li]) // 先判断左右子节点,哪个较大。
{ cMax = ri; }
if (arr[cMax] > arr[index]) {
swap(cMax, index, arr); // 如果父节点被子节点调换,
maxHeapify(cMax, len, arr); // 则需要继续判断换下后的父节点是否符合堆的特性。
}
}
5. 冒泡排序
基本思想:冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
public static void bubbleSort(int[] array) {
int temp = 0;
for (int i = 0; i < array.length - 1; i++) {
for (int j = 0; j < array.length - 1 - i; j++) {
if (array[j] > array[j + 1]) {
temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
}
System.out.println(Arrays.toString(array) + " bubbleSort");
}
外层循环,i的增长,有两个用处。1.用于控制排序的趟数;2.用于控制内层循环,每次排序的尾部在何处结束。
6. 快速排序
算法思想:基于分治的思想,是冒泡排序的改进型。
http://blog.csdn.net/csdn_kenneth/article/details/79161152
7、归并排序
基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。public static void mergingSort(int[] array) {
sort(array, 0, array.length - 1);
System.out.println(Arrays.toString(array) + " mergingSort");
}
private static void sort(int[] data, int left, int right) {
if (left < right) {
//找出中间索引
int center = (left + right) / 2;
//对左边数组进行递归
sort(data, left, center);
//对右边数组进行递归
sort(data, center + 1, right);
//合并
merge(data, left, center, right);
}
}
private static void merge(int[] data, int left, int center, int right) {
int[] tmpArr = new int[data.length];
int mid = center + 1;
//third记录中间数组的索引
int third = left;
int tmp = left;
while (left <= center && mid <= right) {
//从两个数组中取出最小的放入中间数组
if (data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
} else {
tmpArr[third++] = data[mid++];
}
}
//剩余部分依次放入中间数组
while (mid <= right) {
tmpArr[third++] = data[mid++];
}
while (left <= center) {
tmpArr[third++] = data[left++];
}
//将中间数组中的内容复制回原数组
while (tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
}
8、基数排序
基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。public static void radixSort(int[] array) {
//首先确定排序的趟数;
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
int time = 0;
//判断位数;
while (max > 0) {
max /= 10;
time++;
}
//建立10个队列;
ArrayList<ArrayList<Integer>> queue = new ArrayList<>();
for (int i = 0; i < 10; i++) {
ArrayList<Integer> queue1 = new ArrayList<>();
queue.add(queue1);
}
//进行time次分配和收集;
for (int i = 0; i < time; i++) {
//分配数组元素;
for (int anArray : array) {
//得到数字的第time+1位数;
int x = anArray % (int)Math.pow(10, i + 1) / (int)Math.pow(10, i);
ArrayList<Integer> queue2 = queue.get(x);
queue2.add(anArray);
queue.set(x, queue2);
}
int count = 0;//元素计数器;
//收集队列元素;
for (int k = 0; k < 10; k++) {
while (queue.get(k).size() > 0) {
ArrayList<Integer> queue3 = queue.get(k);
array[count] = queue3.get(0);
queue3.remove(0);
count++;
}
}
}
System.out.println(Arrays.toString(array) + " radixSort");
}
结果: