最短路||HDU2544

文章转自某大佬:http://blog.csdn.net/shuangde800/article/details/7987134
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544
题目:

Problem Description

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

Input

输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。

Output

对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间

Sample Input

2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0

Sample Output

3
2

Source
UESTC 6th Programming Contest Online

基础最短路,不解释,其实是专门用来验证各种最短路模板的。

1· Dijkstra 普通版

    #include<cstdio>  
    #include<cstring>  
    const int N=105, INF=9999999;  
    int d[N], w[N][N],vis[N],n,m;  

    void Dijkstra(int src){  
        for(int i=1; i<=n; ++i)  
            d[i] = INF;  
        d[src] = 0;   
        memset(vis, 0, sizeof(vis));  
        for(int i=1; i<=n; ++i){  
            int u=-1;  
            for(int j=1; j<=n; ++j)if(!vis[j]){  
                if(u==-1 || d[j]<d[u]) u=j;  
            }  
            vis[u] = 1;  
            for(int j=1; j<=n; ++j)if(!vis[j]){  
                int tmp = d[u] + w[u][j];  
                if(tmp<d[j]) d[j] = tmp;  
            }  
        }  
    }  
    int main(){  
        int a,b,c;  
        while(~scanf("%d%d",&n,&m)&&n+m){  
            for(int i=1; i<=n; ++i){  
                w[i][i] = INF;  
                for(int j=i+1; j<=n; ++j)  
                    w[i][j] = w[j][i] = INF;  
            }  
            for(int i=0; i<m; ++i){  
                scanf("%d%d%d",&a,&b,&c);  
                w[a][b] = w[b][a] = c;  
            }  
            Dijkstra(1);  
            printf("%d\n", d[n]);  
        }  
        return 0;  
    }  

2· Dijkstra+邻接表(用数组实现)+优先队列优化

    #include<cstdio>  
    #include<cstring>  
    #include<utility>  
    #include<queue>  
    using namespace std;  

    const int N=20005;  
    const int INF=9999999;  

    typedef pair<int,int>pii;  
    priority_queue<pii, vector<pii>, greater<pii> >q;  

    int d[N], first[N], u[N], v[N], w[N], next[N],n,m;  
    bool vis[N];  


    // 无向图的输入,注意每输入的一条边要看作是两条边  
    void read_graph(){  
        memset(first, -1, sizeof(first)); //初始化表头  
        for(int e=1; e<=m; ++e){  
            scanf("%d%d%d",&u[e], &v[e], &w[e]);  
            u[e+m] = v[e]; v[e+m] = u[e]; w[e+m] = w[e];  // 增加一条它的反向边  

            next[e] = first[u[e]];  // 插入链表  
            first[u[e]] = e;  

            next[e+m] =first[u[e+m]]; // 反向边插入链表  
            first[u[e+m]] = e+m;  
        }  
    }  

    void Dijkstra(int src){  
        memset(vis, 0, sizeof(vis));  
        for(int i=1; i<=n; ++i) d[i] = INF;  
        d[src] = 0;  
        q.push(make_pair(d[src], src));  
        while(!q.empty()){  
            pii u = q.top(); q.pop();  
            int x = u.second;  
            if(vis[x]) continue;  
            vis[x] = true;  
            for(int e = first[x]; e!=-1; e=next[e]) if(d[v[e]] > d[x]+w[e]){  
                d[v[e]] = d[x] + w[e];  
                q.push(make_pair(d[v[e]], v[e]));  
            }   
        }  
    }  

    int main(){  
        int a,b,c;  
        while(~scanf("%d%d",&n,&m)&&n+m){  
            read_graph();  
            Dijkstra(1);  
            printf("%d\n", d[n]);  
        }  
        return 0;  
    }  

3· Dijkstra+邻接表(用vecor实现)+优先队列优化

    #include<cstdio>  
    #include<cstring>  
    #include<utility>  
    #include<queue>  
    #include<vector>  
    using namespace std;  

    const int N=105;  
    const int INF=9999999;  

    typedef pair<int,int>pii;  
    vector<pii>G[N];  
    priority_queue<pii, vector<pii>, greater<pii> >q;  

    int d[N], first[N], u[N], v[N], w[N], next[N],n,m;  
    bool vis[N];  


    // 无向图的输入,注意没输入的一条边要看作是两条边  
    void read_graph(){  
        for(int i=1; i<=n; ++i)  
            G[i].clear();  
        int a,b,c;  
        for(int i=1; i<=m; ++i){  
            scanf("%d%d%d",&a,&b,&c);  
            G[a].push_back(make_pair(b,c));  
            G[b].push_back(make_pair(a,c));  
        }  
    }  

    void Dijkstra(int src){  
        memset(vis, 0, sizeof(vis));  
        for(int i=1; i<=n; ++i) d[i] = INF;  
        d[src] = 0;  
        q.push(make_pair(d[src], src));  
        while(!q.empty()){  
            pii t = q.top(); q.pop();  
            int u = t.second;  
            if(vis[u]) continue;  
            vis[u] = true;  
            for(int v=0; v<G[u].size(); ++v)if(d[G[u][v].first] > d[u]+G[u][v].second){  
                d[G[u][v].first] = d[u]+G[u][v].second;  
                q.push(make_pair(d[G[u][v].first], G[u][v].first));  
            }  
        }  
    }  

    int main(){  
        int a,b,c;  
        while(~scanf("%d%d",&n,&m)&&n+m){  
            read_graph();  
            Dijkstra(1);  
            printf("%d\n", d[n]);  
        }  
        return 0;  
    }  

二,Bellman-Ford算法

    #include<cstdio>  
    #include<cstring>  
    #include<utility>  
    #include<queue>  
    using namespace std;  

    const int N=20005;  
    const int INF=9999999;  

    int n, m, u[N],v[N],w[N], d[N];  


    // 无向图的输入,注意每输入的一条边要看作是两条边  
    inline void read_graph(){  
        for(int e=1; e<=m; ++e){  
            scanf("%d%d%d",&u[e],&v[e],&w[e]);  
        }  
    }  

    inline void Bellman_Ford(int src){  
        for(int i=1; i<=n; ++i) d[i] = INF;  
        d[src] = 0;  
        for(int k=0; k<n-1; ++k){  
            for(int i=1; i<=m; ++i){   
                int x=u[i], y=v[i];  
                if(d[x] < INF){  
                    if(d[y]>d[x]+w[i])  
                        d[y] = d[x]+w[i];  
                }  
                if(d[y] < INF){  
                    if(d[x]>d[y]+w[i])  
                        d[x] = d[y]+w[i];  
                }  
            }  
        }  
    }  

    int main(){  
        int a,b,c;  
        while(~scanf("%d%d",&n,&m)&&n+m){  
            read_graph();  
            Bellman_Ford(1);  
            printf("%d\n", d[n]);  
        }  
        return 0;  
    } 

三,SPFA

邻接表实现

    #include<cstdio>  
    #include<cstring>  
    #include<utility>  
    #include<queue>  
    using namespace std;  

    const int N=20005;  
    const int INF=2147483646>>1;  

    int n, m, first[N],next[N],u[N],v[N],w[N], d[N];  
    bool vis[N];  

    queue<int>q;  

    inline void read_graph(){  
        memset(first, -1, sizeof(first));  
        for(int e=1; e<=m; ++e){  
            scanf("%d%d%d",&u[e],&v[e],&w[e]);  
            u[e+m]=v[e], v[e+m]=u[e], w[e+m]=w[e];  
            next[e] = first[u[e]];  
            first[u[e]] = e;  
            next[e+m] = first[u[e+m]];  
            first[u[e+m]] = e+m;  
        }  
    }  

    void SPFA(int src){  
        memset(vis, 0, sizeof(vis));  
        for(int i=1; i<=n; ++i) d[i] = INF;  
        d[src] = 0;  
        vis[src] = true;  

        q.push(src);  
        while(!q.empty()){  
            int x = q.front();  q.pop();  
            vis[x] = false;  
            for(int e=first[x]; e!=-1; e=next[e]){  
                if(d[x]+w[e] < d[v[e]]){  
                    d[v[e]] = d[x]+w[e];  
                    if(!vis[v[e]]){  
                        vis[v[e]] = true;  
                        q.push(v[e]);  
                    }  
                }  
            }  
        }   
    }  

    int main(){  
        int a,b,c;  
        while(~scanf("%d%d",&n,&m)&&n+m){  
            read_graph();  
            SPFA(1);  
            printf("%d\n", d[n]);  
        }  
        return 0;  
    }  

四, Floyd算法

    #include<cstdio>  
    #include<cstring>  
    #include<utility>  
    #include<queue>  
    using namespace std;  

    const int N=105;  
    const int INF=2147483646;  

    int n, m, d[N][N];  


    inline void read_graph(){  
        for(int i=1; i<=n; ++i){  
            d[i][i] = INF;  
            for(int j=i+1; j<=n; ++j)  
                d[i][j]=d[j][i]=INF;  
        }  
        int a,b,c;  
        for(int e=1; e<=m; ++e){  
            scanf("%d%d%d",&a,&b,&c);  
            d[a][b]=d[b][a]=c;  
        }  
    }  

    inline void Floyd(int src){  
        for(int k=1; k<=n; ++k){  
            for(int i=1; i<=n; ++i){  
                for(int j=1; j<=n; ++j)  
                    if(d[i][k]<INF && d[k][j]<INF){  //防止溢出  
                        d[i][j] = min(d[i][j], d[i][k]+d[k][j]);  
                    }  
            }  
        }  
    }  

    int main(){  
        int a,b,c;  
        while(~scanf("%d%d",&n,&m)&&n+m){  
            read_graph();  
            Floyd(1);  
            printf("%d\n", d[1][n]);  
        }  
        return 0;  
    }  

原创 —By D_Double

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值