文章转自某大佬:http://blog.csdn.net/shuangde800/article/details/7987134
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544
题目:
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
Sample Output
3
2
Source
UESTC 6th Programming Contest Online
基础最短路,不解释,其实是专门用来验证各种最短路模板的。
1· Dijkstra 普通版
#include<cstdio>
#include<cstring>
const int N=105, INF=9999999;
int d[N], w[N][N],vis[N],n,m;
void Dijkstra(int src){
for(int i=1; i<=n; ++i)
d[i] = INF;
d[src] = 0;
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; ++i){
int u=-1;
for(int j=1; j<=n; ++j)if(!vis[j]){
if(u==-1 || d[j]<d[u]) u=j;
}
vis[u] = 1;
for(int j=1; j<=n; ++j)if(!vis[j]){
int tmp = d[u] + w[u][j];
if(tmp<d[j]) d[j] = tmp;
}
}
}
int main(){
int a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m){
for(int i=1; i<=n; ++i){
w[i][i] = INF;
for(int j=i+1; j<=n; ++j)
w[i][j] = w[j][i] = INF;
}
for(int i=0; i<m; ++i){
scanf("%d%d%d",&a,&b,&c);
w[a][b] = w[b][a] = c;
}
Dijkstra(1);
printf("%d\n", d[n]);
}
return 0;
}
2· Dijkstra+邻接表(用数组实现)+优先队列优化
#include<cstdio>
#include<cstring>
#include<utility>
#include<queue>
using namespace std;
const int N=20005;
const int INF=9999999;
typedef pair<int,int>pii;
priority_queue<pii, vector<pii>, greater<pii> >q;
int d[N], first[N], u[N], v[N], w[N], next[N],n,m;
bool vis[N];
// 无向图的输入,注意每输入的一条边要看作是两条边
void read_graph(){
memset(first, -1, sizeof(first)); //初始化表头
for(int e=1; e<=m; ++e){
scanf("%d%d%d",&u[e], &v[e], &w[e]);
u[e+m] = v[e]; v[e+m] = u[e]; w[e+m] = w[e]; // 增加一条它的反向边
next[e] = first[u[e]]; // 插入链表
first[u[e]] = e;
next[e+m] =first[u[e+m]]; // 反向边插入链表
first[u[e+m]] = e+m;
}
}
void Dijkstra(int src){
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; ++i) d[i] = INF;
d[src] = 0;
q.push(make_pair(d[src], src));
while(!q.empty()){
pii u = q.top(); q.pop();
int x = u.second;
if(vis[x]) continue;
vis[x] = true;
for(int e = first[x]; e!=-1; e=next[e]) if(d[v[e]] > d[x]+w[e]){
d[v[e]] = d[x] + w[e];
q.push(make_pair(d[v[e]], v[e]));
}
}
}
int main(){
int a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m){
read_graph();
Dijkstra(1);
printf("%d\n", d[n]);
}
return 0;
}
3· Dijkstra+邻接表(用vecor实现)+优先队列优化
#include<cstdio>
#include<cstring>
#include<utility>
#include<queue>
#include<vector>
using namespace std;
const int N=105;
const int INF=9999999;
typedef pair<int,int>pii;
vector<pii>G[N];
priority_queue<pii, vector<pii>, greater<pii> >q;
int d[N], first[N], u[N], v[N], w[N], next[N],n,m;
bool vis[N];
// 无向图的输入,注意没输入的一条边要看作是两条边
void read_graph(){
for(int i=1; i<=n; ++i)
G[i].clear();
int a,b,c;
for(int i=1; i<=m; ++i){
scanf("%d%d%d",&a,&b,&c);
G[a].push_back(make_pair(b,c));
G[b].push_back(make_pair(a,c));
}
}
void Dijkstra(int src){
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; ++i) d[i] = INF;
d[src] = 0;
q.push(make_pair(d[src], src));
while(!q.empty()){
pii t = q.top(); q.pop();
int u = t.second;
if(vis[u]) continue;
vis[u] = true;
for(int v=0; v<G[u].size(); ++v)if(d[G[u][v].first] > d[u]+G[u][v].second){
d[G[u][v].first] = d[u]+G[u][v].second;
q.push(make_pair(d[G[u][v].first], G[u][v].first));
}
}
}
int main(){
int a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m){
read_graph();
Dijkstra(1);
printf("%d\n", d[n]);
}
return 0;
}
二,Bellman-Ford算法
#include<cstdio>
#include<cstring>
#include<utility>
#include<queue>
using namespace std;
const int N=20005;
const int INF=9999999;
int n, m, u[N],v[N],w[N], d[N];
// 无向图的输入,注意每输入的一条边要看作是两条边
inline void read_graph(){
for(int e=1; e<=m; ++e){
scanf("%d%d%d",&u[e],&v[e],&w[e]);
}
}
inline void Bellman_Ford(int src){
for(int i=1; i<=n; ++i) d[i] = INF;
d[src] = 0;
for(int k=0; k<n-1; ++k){
for(int i=1; i<=m; ++i){
int x=u[i], y=v[i];
if(d[x] < INF){
if(d[y]>d[x]+w[i])
d[y] = d[x]+w[i];
}
if(d[y] < INF){
if(d[x]>d[y]+w[i])
d[x] = d[y]+w[i];
}
}
}
}
int main(){
int a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m){
read_graph();
Bellman_Ford(1);
printf("%d\n", d[n]);
}
return 0;
}
三,SPFA
邻接表实现
#include<cstdio>
#include<cstring>
#include<utility>
#include<queue>
using namespace std;
const int N=20005;
const int INF=2147483646>>1;
int n, m, first[N],next[N],u[N],v[N],w[N], d[N];
bool vis[N];
queue<int>q;
inline void read_graph(){
memset(first, -1, sizeof(first));
for(int e=1; e<=m; ++e){
scanf("%d%d%d",&u[e],&v[e],&w[e]);
u[e+m]=v[e], v[e+m]=u[e], w[e+m]=w[e];
next[e] = first[u[e]];
first[u[e]] = e;
next[e+m] = first[u[e+m]];
first[u[e+m]] = e+m;
}
}
void SPFA(int src){
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; ++i) d[i] = INF;
d[src] = 0;
vis[src] = true;
q.push(src);
while(!q.empty()){
int x = q.front(); q.pop();
vis[x] = false;
for(int e=first[x]; e!=-1; e=next[e]){
if(d[x]+w[e] < d[v[e]]){
d[v[e]] = d[x]+w[e];
if(!vis[v[e]]){
vis[v[e]] = true;
q.push(v[e]);
}
}
}
}
}
int main(){
int a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m){
read_graph();
SPFA(1);
printf("%d\n", d[n]);
}
return 0;
}
四, Floyd算法
#include<cstdio>
#include<cstring>
#include<utility>
#include<queue>
using namespace std;
const int N=105;
const int INF=2147483646;
int n, m, d[N][N];
inline void read_graph(){
for(int i=1; i<=n; ++i){
d[i][i] = INF;
for(int j=i+1; j<=n; ++j)
d[i][j]=d[j][i]=INF;
}
int a,b,c;
for(int e=1; e<=m; ++e){
scanf("%d%d%d",&a,&b,&c);
d[a][b]=d[b][a]=c;
}
}
inline void Floyd(int src){
for(int k=1; k<=n; ++k){
for(int i=1; i<=n; ++i){
for(int j=1; j<=n; ++j)
if(d[i][k]<INF && d[k][j]<INF){ //防止溢出
d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
}
}
}
}
int main(){
int a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m){
read_graph();
Floyd(1);
printf("%d\n", d[1][n]);
}
return 0;
}
原创 —By D_Double