程序员学长 | 最强总结! 深度学习中常见的权重初始化方法

本文来源公众号“程序员学长”,仅用于学术分享,侵权删,干货满满。

原文链接:最强总结! 深度学习中常见的权重初始化方法

今天给大家分享常见的 7 种权重初始化方法。

初始化深度学习模型的权重是影响模型训练速度、稳定性以及最终性能的重要因素。

以下是常见的 7 种权重初始化方法,每种方法都有其适用的场景和特性。

1. 零初始化(Zero Initialization)

将所有权重初始化为零。这是最简单的初始化方法,但通常不适用于深度神经网络。

优点

实现简单,易于理解。

缺点

这种初始化方法的问题在于,会导致所有的神经元在每一层都学习到相同的特征。

因为对于对称的权重,反向传播更新时会导致相同的梯度,这使得所有的神经元在训练过程中没有差异化,从而丧失了模型的学习能力。

2.随机初始化(Random Initialization)

权重随机初始化为一个较小的随机数。通常,这些随机数从均匀分布或正态分布中采样。

优点

可以打破对称性,避免零初始化带来的问题。

缺点

需要小心选择随机数的范围,太大可能导致梯度爆炸,太小则可能导致梯度消失。

3.Xavier 初始化(Xavier Initialization)

Xavier 初始化方法根据输入和输出的节点数来选择权重的初始值范围,使得网络中每一层的输入和输出的方差保持一致,避免梯度爆炸或消失。

公式

  • 若使用均匀分布:

  • 若使用正态分布:

优点

  • 在深层网络中,Xavier 初始化可以平衡前向和反向传播中的信号,从而加速收敛。

  • 适用于Sigmoid 和 tanh激活函数的网络。

缺点

对于激活函数是ReLU的网络,Xavier 初始化可能不够有效。

4.He初始化(He Initialization)

He 初始化是专门为 ReLU 及其变体(如Leaky ReLU)激活函数设计的初始化方法。

它在Xavier初始化的基础上,将方差放大,以适应ReLU激活函数。

公式

  • 若使用正态分布:

  • 若使用均匀分布:

优点

更适合ReLU激活函数,能有效避免梯度消失问题。

缺点

对于其他非ReLU激活函数,可能不如Xavier初始化效果好。

5.LeCun 初始化(LeCun Initialization)

LeCun 初始化是一种专门为特定激活函数(如 tanh 和 Leaky ReLU)设计的权重初始化方法。

它的目标是确保在前向传播和反向传播中,网络中信号的方差能够保持稳定,从而避免梯度消失或爆炸问题。

公式

优点

能有效保持网络中信号的方差一致,适用于特定的激活函数。

缺点

对于其他激活函数效果有限。

6.Orthogonal初始化(Orthogonal Initialization)

Orthogonal 初始化是将权重矩阵初始化为一个正交矩阵。

正交矩阵的特性使得其转置矩阵也是其逆矩阵,从而在反向传播中能够很好地保持信号的流动。

优点

能有效避免梯度消失和梯度爆炸问题,特别适用于深度神经网络。

缺点

计算复杂度较高,适用范围有限。

7.Variance Scaling 初始化

Variance Scaling 初始化是一种基于方差缩放的权重初始化方法。

它是为了解决在深度网络中,由于不当的权重初始化导致的梯度消失或梯度爆炸问题。

Variance Scaling 初始化通过缩放初始化权重的方差,使得每一层的输出方差保持一致,从而稳定模型的训练过程。

Variance Scaling 初始化通常使用以下公式定义:

优点

  • 通用性强,Variance Scaling 初始化是一种非常通用的初始化方法,可以适应不同的网络结构和激活函数。

  • 避免梯度消失/爆炸,通过合适的方差缩放,Variance Scaling 初始化能够有效避免梯度消失或爆炸问题。

缺点

  • 参数选择复杂,需要根据具体的激活函数和网络结构选择合适的缩放因子,这增加了使用的复杂性。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值