本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。
早期目标检测(OD,object detection)是许多动态系统安全的关键任务。目前的OD算法对于远距离的小物体的成功率有限。
PART/1 概述
目前的OD算法对于长距离的小物体的成功率有限。为了提高这项任务的准确性和效率,我们提出了一套新的算法,将图像划分为块,选择具有不同尺度对象的块,详细说明小对象的细节,并尽早检测到它。我们的方法建立在transformer的网络上,并集成了扩散模型以提高检测精度。如在BDD100K,我们的算法将小目标的mAP从1.03提高到8.93,并将计算中的数据量减少了77%以上。
PART/2 背景
物体检测(OD)在许多现实场景的应用中发挥着至关重要的作用,如自动驾驶和机器人。尽管针对这项任务的各种算法激增,但现有方法在早期目标检测方面仍然面临重大挑战,这是实现快速和主动决策的关键方面。在这样的场景中,由于距离长,捕获图像中的对象的大小通常会显著减小。