CV-目标检测专栏
文章平均质量分 91
关于图像处理的目标检测专栏
双木的木
种一棵树最好的时间是十年前,其次是现在。
展开
-
集智书童 | YOLOv8架构的改进:POLO 模型在多类目标检测中的突破 !
基于无人机影像和目标检测技术的自动化野生动物调查已成为保护生物学中一种强大且日益流行的工具。大多数检测器需要使用带有标注边界框的训练图像,这种做法既费时又费钱,而且并不总是明确。为了减少这种做法带来的标注负担,作者开发了POLO,这是一种可以在仅使用点标签进行训练的多类目标检测模型。原创 2024-11-13 17:20:29 · 375 阅读 · 0 评论 -
OpenCV与AI深度学习 | 基于YoloV11自定义数据集实现车辆事故检测(有源码,建议收藏!)
在智能交通系统领域,实时检测车辆事故的能力变得越来越重要。该项目利用先进的计算机视觉技术,采用最先进的对象检测模型 YOLOv11 来准确识别和分类车辆事故。主要目标是通过向紧急服务提供及时警报并实现更快的响应时间来提高道路安全。原创 2024-11-12 17:45:20 · 566 阅读 · 0 评论 -
江大白 | 小目标物体检测方法:基于距离相似度的标签分配策略(附论文及源码)
在计算机视觉中,小目标检测由于信息不足而具有挑战性。对此,本文提出相似距离(SimD)策略,提升检测准确性。SimD自适应学习超参数,适应不同数据集和物体大小,在多个数据集上表现出色,特别是在AI-TOD数据集上显著提高精度,且无需设置超参数!原创 2024-11-07 17:34:21 · 1039 阅读 · 0 评论 -
OpenCV与AI深度学习 | 超越YOLOv10/11、RT-DETRv2/3!中科大D-FINE重新定义边界框回归任务
D-FINE 的作者均来自中国科学技术大学。第一作者为中科大在读博士生彭岩松 (https://scholar.google.com/citations?user=CTidez8AAAAJ&hl=zh-CN),其研究方向为实时目标检测以及神经形态视觉,已在 AAAI、ICCV、CVPR 等国际顶级会议上以第一作者身份发表多篇论文。本文由吴枫教授、孙晓艳教授和张越一副研究员共同指导,其他作者包括中科大博士生李和倍及硕士生吴沛熹。原创 2024-11-05 17:51:15 · 781 阅读 · 0 评论 -
集智书童 | 利用知识蒸馏算法优化 YOLOv5 目标检测 !
这篇论文探讨了知识蒸馏技术在目标检测任务中的应用,尤其是不同蒸馏温度对学生模型性能的影响。通过将YOLOv5s作为教师网络和较小的YOLOv5s作为学生网络,作者发现,随着蒸馏温度的增加,学生的检测准确性逐渐提高,最终在特定温度下实现了mAP50和mAP50-95指标,这些指标优于原始的YOLOv5s模型。原创 2024-11-02 00:30:00 · 682 阅读 · 0 评论 -
OpenCV学堂 | OpenCV中支持的人脸检测方法整理与汇总
自从VJ在2004发表了关于级联分类器实时对象检测的论文以后,级联分类器就在OpenCV中落地生根了,一段时间,特别是OpenCV3.x版本中基于级联分类器的人脸检测一直是标配,虽然大家刚开始看了例子之后觉得这个是一个很实用的功能,但是在实际实用中级联分类器的人脸检测方法则是频频翻车,我自己曾经移植到Android上面玩过,日常就是两个字“翻车”,很多时候都无法达到开发者想要的稳定性与实时性能。但是这个并不妨碍它作为OpenCV3.x的一大关注点,还产生了无数的Demo演示程序。但是如今已经是OpenCV4原创 2024-11-01 16:53:28 · 692 阅读 · 0 评论 -
OpenCV与AI深度学习 | 基于OpenCV和深度学习预测年龄和性别
OpenCV 是“开源计算机视觉”的缩写。从名称上看,它是一个开源计算机视觉和机器学习库。该库能够处理实时图像和视频,同时还具有分析能力。它支持深度学习框架TensorFlow、Caffe 和 PyTorch。原创 2024-10-31 21:58:19 · 801 阅读 · 0 评论 -
极市平台 | ECCV‘24|Plain-Det:同时支持多数据集训练的新目标检测
论文提出了Plain-Det,提供了灵活性以适应新的数据集,具有跨多样数据集的稳健性能、训练效率和与各种检测架构的兼容性。结合Def-DETR和Plain-Det,在COCO上达到51.9的mAP,匹配当前最先进的检测器。在13个下游数据集上进行了广泛的实验,Plain-Det展现了强大的泛化能力。原创 2024-10-30 17:15:56 · 734 阅读 · 0 评论 -
江大白 | 跨界融合创新,基于YOLO11和Ollama的增强OCR文本识别
本文介绍一种通过自定义YOLOv11和EasyOCR,结合Ollama优化OCR效果的方法,解决了传统OCR在复杂图像中的识别难题,显著提高了准确性,为高精度文本提取提供了有效方案。原创 2024-10-29 15:05:16 · 1077 阅读 · 0 评论 -
OpenCV与AI深度学习 | 实战 | YOLO11自定义数据集训练实现缺陷检测 (标注+训练+预测 保姆级教程)
本文将手把手教你用YOLO11训练自己的数据集并实现缺陷检测。原创 2024-10-29 14:00:55 · 1248 阅读 · 0 评论 -
集智书童 | 0.26M 参数,0.483 GFLOPs,EfficientCrackNet 轻量级检测模型 !
EfficientCrackNet是一个轻量级的混合模型,旨在在基础设施维护中自动检测和分割裂纹。它结合了DSC和MobileViT块,以捕获全局和局部特征,提高分割精度。该模型使用了一种创新性的EEM,结合了DoG和LoG进行特征提取,无需额外训练,并集成了ULSAM以改进特征表示。EfficientCrackNet在三个基准数据集上实现了最先进的结果,仅需0.26M参数和0.483 GFLOPs,使其成为实际应用的理想选择。原创 2024-10-27 08:30:00 · 673 阅读 · 0 评论 -
小白学视觉 | PE-YOLO:解决黑夜中的目标检测难点
为了解决这个问题,有研究者提出了一个金字塔增强网络(pyramid enhanced network,PENet),并将其与YOLOv3结合起来,构建了一个名为PE-YOLO的暗目标检测框架。首先,PENet使用拉普拉斯金字塔将图像分解为不同分辨率的四个分量。原创 2024-10-26 21:26:12 · 499 阅读 · 0 评论 -
江大白 | 万字长文!人体姿态估计入门详细教程(推荐收藏!)
基于视觉的单目人体姿势估计,是计算机视觉中最基本和最具挑战性的问题之一,旨在从输入图像或视频序列中获取人体姿势。本文作者总结了人体姿态估计入门需要学习的一些知识,在学习过程中的一些感悟和踩过的坑,列举主要的工作脉络和一些细节。全文较长,建议先收藏再阅读!原创 2024-10-23 17:23:07 · 1633 阅读 · 0 评论 -
OpenCV学堂 | YOLOv8实战 | 荧光显微镜细胞图像检测
该图像数据集是 U2OS 细胞高通量化学筛选的一部分,其中包含 200 种生物活性化合物的示例。治疗效果最初是使用细胞绘画测定(荧光显微镜)成像的。该数据集仅包括每种化合物的单个视场的 DNA 通道。这些图像呈现了各种核表型,代表了高通量化学扰动。该数据集的主要用途是研究分割算法,该算法可以以准确的方式分离单个细胞核实例,而不管它们的形状和细胞密度如何。该集合有大约 23,000 个手动注释的单个细胞核,以建立用于分割评估的数据集合。原创 2024-10-21 15:55:27 · 763 阅读 · 0 评论 -
机器学习算法那些事 | 有位大佬逐模块解析了detr结构
Transformer在计算机视觉领域大方异彩,Detection Transformer(DETR)是Transformer在目标检测领域的成功应用。利用Transformer中attention机制能够有效建模图像中的长程关系(long range dependency),简化目标检测的pipeline,构建端到端的目标检测器。原创 2024-10-20 08:15:00 · 1746 阅读 · 0 评论 -
江大白 | 目标检测YOLOv1-YOLO11,算法进化全记录(建议收藏!)
YOLO(You Only Look Once)系列模型自2015年推出以来,彻底变革了目标检测领域,以其单一回归问题设计提升检测效率。文章详述了YOLO从v1到11的演变历程,每一代均在精度和速度上有所突破,特别是最新的YOLO11,在实时检测和多任务应用中表现出色。原创 2024-10-17 17:16:03 · 1382 阅读 · 0 评论 -
极市平台 | 号称YOLO终结者?一探究竟RT-DETR
众所周知,实时目标检测(Real-Time Object Detection)一直被YOLO系列检测器统治着,YOLO版本更是炒到了v8,前两天百度飞桨的PaddleDetection团队发布了一个名为 RT-DETR 的检测器,宣告其推翻了YOLO对实时检测领域统治。论文标题很直接:《DETRs Beat YOLOs on Real-time Object Detection》,直译就是 RT-DETR在实时目标检测中击败YOLO家族!原创 2024-10-16 20:42:06 · 1092 阅读 · 0 评论 -
江大白 | 小目标检测的12种解决方案汇总,推荐收藏!
小目标检测是计算机视觉领域中的一个极具挑战性的问题。随着深度学习和计算机视觉领域的不断发展,越来越多的应用场景需要对小目标进行准确的检测和识别。本文将从小目标的定义、意义和挑战等方面入手,全面介绍小目标检测的各种解决方案。原创 2024-10-16 20:39:53 · 1642 阅读 · 0 评论 -
计算机视觉与机器学习 | 目标检测 - 主流算法介绍 - 从RCNN到DETR(建议收藏 !)
在深度学习介入该领域之前,传统的目标检测思路包括区域选择、手动特征提取、分类器分类。由于手动提取特征的方法往往很难满足目标的多样化特征,传统方法始终没能很好的解决目标检测问题。深度学习兴起之后,神经网络可以从大量数据中自动学出强大的特征提取和拟合能力,因而涌现出很多性能优良的目标检测算法。基于深度学习的目标检测方法大致可分为三类——双阶段目标检测、单阶段目标检测、基于transformer的目标检测,本文将分别介绍这三类方法。原创 2024-10-15 09:27:26 · 1515 阅读 · 0 评论 -
极市平台 | ECCV 2024|DQ-DETR:第一个针对微小目标检测的DETR类模型
这是第一个针对微小目标检测的DETR类模型,提出了三大创新模块:类别计数模块、计数引导的特征增强和动态查询选择模块,以提高对微小物体的检测能力。此外,论文还介绍了使用的数据集和模型训练策略,并展示了精度对比和可视化结果。原创 2024-10-11 15:26:04 · 1095 阅读 · 0 评论 -
江大白 | YOLOv11算法详解,YOLOv11/v10/v8性能对比分析,谁才是真正的目标检测之王?
目标检测任务在AI项目落地中扮演着至关重要的角色,是众多AI任务的前置算法,本文详细阐述了YOLOv11算法的改进方向、功能和性能,并与YOLOv10和YOLOv8进行比较,充分验证了YOLOv11在速度、准确性和多样任务支持等方面的有效性。原创 2024-10-08 17:21:31 · 2426 阅读 · 0 评论 -
OpenCV与AI深度学习 | YOLO11介绍及五大任务推理演示(目标检测,图像分割,图像分类,姿态检测,带方向目标检测)
在不断发展的 AI 世界中,有一件事是我们可以确定的:模型会变得越来越好、越来越快、越来越智能。就在你认为 YOLO 系列已经达到顶峰时,Ultralytics 发布了最新升级版 — YOLO11。没错,不是YOLOv11 — 他们通过删除“v”实现了极简主义。这就像 YOLO 同时理发和升职一样。原创 2024-10-08 16:04:57 · 1778 阅读 · 0 评论 -
集智书童 | 用于时态动作检测的预测反馈 DETR !
视频中的时间动作检测(TAD)是现实世界中的一个基本且具有挑战性的任务。得益于 Transformer 的独特优势,各种基于DETR的方法已在TAD中得到应用。然而,最近的研究发现,DETR中自注意力层中的注意力衰减导致了其性能下降。本文在之前研究的基础上,针对DETR基础TAD方法中的交叉注意力层注意力衰减问题进行新的探讨。原创 2024-10-07 22:26:08 · 1417 阅读 · 0 评论 -
Coggle数据科学 | 科大讯飞AI大赛:玉米雄穗识别挑战赛
随着中国经济发展和人口增长,对农业生产的需求不断增加,玉米作为重要的粮食作物之一,一直处于国家粮食安全和生态保护的重要位置。玉米制种产业是玉米生产的基础保障。随着玉米制种技术的不断发展,不育系生产由于无需去雄,节省劳动力,已经越来越普及。在玉米种子生产过程中,母本去雄作为种子纯度保障至关重要的环节,准确识别母本去雄后残留雄穗并去除是提升种子质量的重要手段。原创 2024-09-20 22:33:19 · 434 阅读 · 0 评论 -
OpenCV与AI深度学习 | 基于改进YOLOv8的景区行人检测算法
本文研究旨在解决景区行人检测中YOLOv8检测精度较低且参数量较大等问题。首先创建了TAPDataset数据集,并在YOLOv8的基础上,以DepthSepConv作为基本卷积模块,对整个网络进行轻量化处理,提高模型的计算效率和泛化能力;然后引入BiFormer注意力机制,以实现更灵活的计算分配和内容感知;虽后引入轻量化上采样算子CARAFE,在较大的感受野内聚合上下文信息,提高算法的检测速度和检测精度;最后增加一层小目标检测层,将目标检测层由三层变为四层,提升模型对小目标的检测能力。原创 2024-08-24 21:05:00 · 679 阅读 · 0 评论 -
计算机视觉研究院 | 2024新技术:远距离的小目标也可以准确检测
目前的OD算法对于长距离的小物体的成功率有限。为了提高这项任务的准确性和效率,我们提出了一套新的算法,将图像划分为块,选择具有不同尺度对象的块,详细说明小对象的细节,并尽早检测到它。我们的方法建立在transformer的网络上,并集成了扩散模型以提高检测精度。如在BDD100K,我们的算法将小目标的mAP从1.03提高到8.93,并将计算中的数据量减少了77%以上。原创 2024-08-23 17:52:50 · 1129 阅读 · 0 评论 -
OpenCV与AI深度学习 | 基于GAN的零缺陷样本产品表面缺陷检测
缺陷检测是工业生产过程中的关键环节,其检测结果的好坏直接影响着产品的质量。而在现实场景中,但产品瑕疵率非常低,甚至是没有,缺陷样本的不充足使得需要深度学习缺陷检测模型准确率不高。如何在缺陷样本少的情况下实现高精度的检测呢?目前有两种方法,一种是小样本学习,另一种是用GAN。本文将介绍一种GAN用于无缺陷样本产品表面缺陷检测。原创 2024-08-04 17:33:52 · 1101 阅读 · 0 评论 -
OpenCV与AI深度学习 | YOLOv10在PyTorch和OpenVINO中推理对比
例如,在 COCO 数据集上,YOLOv10-S 的速度是RT-DETR-R18 的 1.8 倍,而 YOLOv10-B 与 YOLOv9-C 相比,在性能相同的情况下,延迟减少了 46%,参数减少了 25%。YOLOv10是清华大学的研究人员在Ultralytics Python包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。然而,对 NMS 的依赖和架构上的低效阻碍了最佳性能的实现。这是由于层差异造成的。添加此行后,我们的 PATH 现在将变为永久的。原创 2024-08-03 22:35:01 · 1129 阅读 · 0 评论 -
集智书童 | 超级干货 | 用万字文章总结25种正则化方法(值得收藏)
一些图像处理任务,如图像分类和目标检测,已经通过使用卷积神经网络(CNN)性能得到了显著的改进。像ResNet和EfficientNet一样,许多架构在创建时已经在至少一个数据集上取得了出色的结果。训练中的一个关键因素是网络的正则化,它可以防止模型在训练的过程中出现过拟合的现象。原创 2024-07-22 16:48:08 · 1089 阅读 · 0 评论 -
OpenCV与AI深度学习 | 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码)
从19年疫情爆发到现在,佩戴口罩对大家来说已是常态。应运而生的就有了很多相关应用,如病毒发展预测、口罩佩戴检测以及戴口罩的人脸识别等。今天介绍的人脸口罩佩戴检测系统主要使用OpenCV和百度飞浆(PaddlePaddle)的PaddleHub提供的检测模型。PaddleHub提供了很多实用的模型,包括图像处理、文字处理、音频处理、视频处理和工业应用等。原创 2024-07-21 17:48:29 · 1069 阅读 · 0 评论 -
OpenCV与AI深度学习 | 深度学习检测小目标常用方法
在深度学习目标检测中,特别是人脸检测中,小目标、小人脸的检测由于分辨率低,图片模糊,信息少,噪音多,所以一直是一个实际且常见的困难问题。不过在这几年的发展中,也涌现了一些提高小目标检测性能的解决手段,本文对这些手段做一个分析、整理和总结。原创 2024-07-19 17:45:40 · 1253 阅读 · 0 评论 -
AIGC先锋科技 | 利用增强现实与改进 YOLOv5 检测 !
随着现代社会的不断发展,全球大多数国家的交通量持续增加,导致路面损坏率上升。因此,实时且高度准确的路面损坏检测与维护已成为当前的需求。在本文中,提出了一种基于CycleGAN和改进的YOLOv5算法的增强型路面损坏检测方法。作者选取了7644张自行收集的路面损坏样本图像作为初始数据集,并利用CycleGAN对其进行增强。原创 2024-07-17 17:58:18 · 808 阅读 · 0 评论 -
计算机视觉研究院 | YOLOv9
在深度网络中,输入数据在前馈过程中丢失信息的现象通常被称为信息瓶颈,其原理图如下图所示。目前,可以缓解这一现象的主要方法有:(1)可逆架构的使用:这种方法主要使用重复的输入数据,并以显式的方式维护输入数据的信息;(2) 掩模建模的使用:主要利用重建损失,采用隐式方法最大化提取的特征,保留输入信息;以及(3)引入深度监督概念:它使用没有丢失太多重要信息的浅层特征来预先建立从特征到目标的映射,以确保重要信息可以转移到更深的层次。然而,上述方法在训练过程和推理过程中都有不同的缺点。原创 2024-07-14 20:43:05 · 776 阅读 · 0 评论 -
小白学视觉 | 基于 PyTorch 的人脸关键点检测
计算机真的能理解人脸吗?你是否想过Instagram是如何给你的脸上应用惊人的滤镜的?该软件检测你脸上的关键点并在其上投影一个遮罩。本教程将文章你如何使用PyTorch构建一个类似的软件。原创 2024-07-13 22:25:29 · 915 阅读 · 0 评论 -
计算机视觉研究院 | 一种基于YOLO-v8的智能城市火灾探测改进方法
为了早期探测火灾,研究人员和工程师创建了基于视觉的火灾探测器(VFD),以及声音敏感、火焰敏感、温度敏感、气体敏感或固体敏感的火灾传感器。我们提出了一种基于YOLOv8算法的智能城市火灾检测改进方法,称为智能火灾检测系统(SFDS),该方法利用深度学习的优势实时检测特定火灾特征。传统上,火灾探测系统依赖于温度、气体和烟雾传感器,这些传感器已被证明对小型火灾是成功的,但对可能迅速蔓延、吞噬整个地区并产生灾难性影响的大型火灾无效。城市的火灾可能会造成毁灭性的后果,造成财产损失,并危及公民的生命。原创 2024-07-10 17:44:00 · 1150 阅读 · 0 评论 -
计算机视觉研究院 | 智慧工地:2PCNet,昼夜无监督域自适应目标检测(附原代码)
夜间图像和伪标签在用作学生的输入之前被缩小,从而提供更强的小规模伪标签。我们的2PCNet将在第一阶段预测的高度自信的伪标签的边界框与学生的区域建议网络(RPN)提出的区域合并在一起。我们可以观察到,由于缺乏域自适应,Faster RCNN无法检测对象,而与我们的方法相比,AT有大量的小误报边界框,我们提出的方法与GT非常相似。(从左到右,从上到下)GT边界框,教师预测的具有非极大抑制(NMS)和阈值(Bp)的边界框,由Bp指导的学生预测的边界框(Bstudent),以及教师预测的一致性损失的边界框。原创 2024-07-09 17:45:40 · 1103 阅读 · 0 评论 -
计算机视觉研究院 | 智慧建筑:基于YOLOv7的建筑外墙缺陷检测
与YOLOv7相比,BFD-YOLO的精度和mAP@.5分别提高了2.2%和2.9%,同时保持了相当的效率。下图显示了数据集中的缺陷示例。作为结构损伤检测的一个组成部分,建筑外墙缺陷的检测可以使政府和管理层准确了解建筑外墙的综合状况,从而有助于制定合理的维修方案。这些方法依赖于检查员的专业知识和经验,这是主观的、危险的和低效的。与数据路径设计策略相比,梯度路径设计策略侧重于分析梯度的来源和组成,以设计有效利用网络参数的网络架构。然而,获取建筑外墙缺陷的图像相对困难,并且在收集的数据中存在类别不平衡的问题。原创 2024-07-08 18:00:34 · 1070 阅读 · 0 评论 -
OpenCV与AI深度学习 | 实战 | YOLOv10模型微调检测肾结石并提高准确率
通过一系列实验(包括增加训练次数),经过微调的 YOLOv10 模型表现出了显著的性能提升,mAP50 值从基线测试中的 77.1 上升到微调后的 94.1,证明了所应用技术的有效性。在这里,样本中的白色像素伪影是罪魁祸首。这里,在样本的三个部分添加了4px 白色伪影,其不透明度从 50% 到 75% 不等,类似于 ROI 采样部分中提到的位置。在肾结石检测数据集上对YOLOv10模型进行微调,显著提高了检测效率,达到了令人印象深刻的94.1的mAP50值,凸显了YOLOv10在医疗诊断方面的潜力。原创 2024-07-03 18:56:20 · 1489 阅读 · 0 评论 -
计算机视觉研究院 | YotoR:融合 Swin Transformer 和YoloR 的混合架构,提升目标检测性能
Transformers是自然语言处理领域的一项革命性技术,它也对计算机视觉产生了重大影响,有可能提高准确性和计算效率。YotoR将坚固的Swin Transformer主干与YoloR颈部和头部相结合。在实验中,YotoR模型TP5和BP4在各种评估中始终优于YoloR P6和Swin Transformers,比Swin Transformer模型提供了改进的目标检测性能和更快的推理速度。这些结果突出了进一步的模型组合和改进Transformer实时目标检测的潜力。原创 2024-07-02 20:15:06 · 798 阅读 · 0 评论 -
AI视界引擎 | 基于 YOLOv8 和计算机视觉 CV 的实时识别系统!
本研究旨在构建一个先进的马拉雅拉姆手语识别系统,旨在有效地检测静态手势。该系统不仅仅将这些手势翻译成字幕,而且还实现了实时操作,利用计算机视觉和深度学习的力量达到了令人满意的准确度。在未来范围方面,计划的扩展工作包括增强系统的功能,以涵盖动态手势。原创 2024-06-29 16:28:40 · 1133 阅读 · 0 评论
分享