CV-目标跟踪专栏
文章平均质量分 89
目标跟踪专栏
双木的木
种一棵树最好的时间是十年前,其次是现在。
展开
-
集智书童 | FMRFT 融合Mamba和 DETR 用于查询时间序列交叉鱼跟踪 !
在本文中,作者提出一种名为FMRFT的实时鱼跟踪模型,该模型基于 Query -时互动,将Mamba在Mamba(MIM) 和 RT-DETR 框架集成,以解决复杂场景中遮挡和冗余检测帧的问题。该模型利用了 MIM 和 RT-DETR 融合框架的低图形内存占用。鉴于鱼和场景之间的相似度较高以及场景中存在干扰物,作者介绍了一种新型的特征提取框架 Fusion MIM,该框架设计用于深入提取鱼特征。针对单一鱼的多重重叠冗余跟踪帧问题,作者开发了一种新颖的 Query -时互动模块和基于 MIM 的特征互动模原创 2024-10-09 21:41:04 · 1326 阅读 · 0 评论 -
DeepDriving | 多目标跟踪算法之DeepSORT
上一篇文章DeepDriving | 多目标跟踪算法之SORT介绍了多目标跟踪算法SORT,该算法虽然速度很快,但是也存在ID切换频繁等问题。针对这些问题,作者时隔一年后又在文章《Simple Online and Realtime Tracking with a Deep Association Metric》中提出了DeepSORT算法。与SORT仅仅采用边界框的IOU作为匹配时的距离度量不同的是,DeepSORT采用一种更可靠的距离度量方法,该方法结合了物体的运动和外观信息,其中外观信息是通过一个原创 2024-06-09 17:56:09 · 1025 阅读 · 0 评论 -
极市平台 | 目标跟踪方向开源数据集资源汇总
本文收集和整理了一些目标跟踪相关的开源数据集,均附有下载链接,希望能给大家的学习带来帮助。原创 2024-05-04 08:16:09 · 409 阅读 · 0 评论 -
DeepDriving | 多目标跟踪算法之SORT
SORT目标跟踪算法仅使用卡尔曼滤波器和匈牙利算法解决帧与帧之间的状态预测和数据关联问题,跟踪的效果高度依赖于目标检测结果的好坏,算法整体设计非常简单,在速度和精度上取得较好的平衡,主要体现一个“快”字。当然,速度提升必然导致精度损失,SORT的缺点在于仅仅使用物体的边界框进行跟踪而忽略其表面特征,在复杂的场景中效果会比较差。另外,SORT没有目标重识别过程,一旦目标丢失就需要重新创建跟踪器去更新状态(一帧未匹配成功就需要重新跟踪),导致同一目标的ID频繁变换。原创 2024-06-07 21:09:07 · 1113 阅读 · 0 评论
分享