向AI转行——人工智能工程师必学的数学基础

数学使人工智能成为一门规范的科学,是人工智能发展必不可少的基础,在人工智能的各个发展阶段都起着关键的作用。


虽然数学一向是被认为独立性最强的纯科学,但是在AI时代,数学已经咸鱼翻身。


现代电子计算机的运算已经不只是简单的运算,而是有逻辑和推理能力,这就是人工智能。而这种运算的基础,仍然是数学。由此可见基础数学教育的重要。数字化时代也正是在这个意义上命名的。


数学使人工智能成为一门规范的科学,是人工智能发展必不可少的基础,在人工智能的各个发展阶段都起着关键的作用。


概率论与数理统计,矩阵分析,最优化理论,凸优化,数学分析,泛函分析等等,是人工智能科学必学的数学基础学科。


人工智能要解决各种不确定问题,这需要数学为其提供不确定推理的基础,概率理论则是实现不确定推理的数学基础。概率论、随机过程、数理统计构成了概率理论,为人工智能处理各种不确定问题奠定了基础。


支持向量机是人工智能的主要分类方法之一,其数学基础为核函数。可计算理论是人工智能的重要理论基础和工具,为了回答是否存在不可判定的问题,数理逻辑学家提出了关于算法的定义(把一般数学推理形式化为逻辑演绎)。可以被计算,就是要找到一个解决问题的算法。在不可计算性以外,如果解决一个问题需要的计算时间随着实例规模呈指数级增长,则该问题被称为不可操作的,对这个问题的研究产生了计算复杂性。可计算性和计算复杂性为人工智能判断问题求解可能性奠定了数学基础。

人工智能学科诞生的时候,在概率论的基础上,出现了条件概率及贝叶斯定理,奠定了大多数人工智能系统中不确定推理的现代方法基础。

贝叶斯网络起源于条件概率,是一种描述变量间不确定因果关系的图形网络模型,是目前人工智能,典型用于各种推理的数学工具。传递算法为贝叶斯网提供了一个有效算法,为其进入实用领域奠定了数学基础。后来,面向对象的思想引入贝叶斯网,用于解决大型复杂系统的建模问题。将时间量引入贝叶斯网则形成了动态贝叶斯网,动态贝叶斯网提供了随时间变化的建模和推理工具。贝叶斯网络节点兼容离散变量和连续数字变量则形成了混合贝叶斯网,混合贝叶斯网在海量数据的挖掘和推理上有较大优势。贝叶斯在人工智能领域的应用主要包括故障诊断,系统可靠性分析,航空交通管理,车辆类型分类等。

相信想要转行人工智能的小伙伴们,对所要学习的数学基础课程已经有了一个大概的范围概念。下面我们为大家推荐一门人工智能学科数学基础系列课程,课程从机器学习用到的概率与统计推断、矩阵、凸优化三个方面来详述相关需要用到数学知识,为您的人工智能转行之路打下基础:

<<<<<<<<<<<<<<<<<<<<<在线系列课>>>>>>>>>>>>>>>>>>>>

机器学习之数学基础系列

系列课程介绍:

本系列课程包括三门课:《机器学习之概率与统计推断》,《机器学习之矩阵》,《机器学习之凸优化》。购买课程后添加小助手为好友(微信ID:superaihelper)加入课程讨论群。 机器学习是一门集概率论、线性代数、数值计算、最优化理论和计算机科学等多个领域的交叉学科。本系列课程以机器学习中的数学基础为主要内容,摆脱传统的讲概念、记公式、解体的数学学习模式,避开冗长的数学证明,从现实任务出发,让听众在短时间内完美补充概率与统计、线性代数和凸优化等数学基础知识,从而快速上手机器学习。

课程特色:专属答疑+课件资料提供+视频无限时回放+VIP交流群

开课时间:随到随学,自由支配

机器学习之概率与统计推断

课程介绍:

本课程讲解机器学习算法所需概率和统计推断知识。概率部分包括概率公理及推论、条件概率、贝叶斯公式、随机变量及其概率函数(CDF/pdf)、常用概率分布及其均值、方差;统计推断部分包括大数定律和中心极限定理、极大似然估计、贝叶斯估计,估计的评价、偏差-方差平衡。课程还会讲解假设检验的基本概念。

课程特色:专属答疑+课件资料提供+视频无限时回放+VIP交流群

开课时间:随到随学,自由支配

机器学习之矩阵

课程介绍:

本课程囊括了机器学习理论中所需要的和线性代数相关的所有知识。 主要有矩阵的定义、性质、运算、分解以及应用。另外,还会讲解线性空间、范数、生成子空间相关知识。购买课程后添加小助手为好友(微信ID:superaihelper)加入课程讨论群。

课程特色:专属答疑+课件资料提供+视频无限时回放+VIP交流群

开课时间:随到随学,自由支配

机器学习之凸优化

课程介绍:

本门课程是《机器学习之数学基础系列》课程之一,主讲内容包括:机器学习与优化方法简介与关系、支持向量机与凸优化求解、深度学习与非凸优化。购买课程后添加小助手为好友(微信ID:superaihelper)加入课程讨论群。

课程特色:专属答疑+课件资料提供+视频无限时回放+VIP交流群

开课时间:随到随学,自由支配


阅读更多

没有更多推荐了,返回首页