朋友杰的2021年之四

去年给自己定的目标是每个月看两本历史书或人物志,可惜的是自己没有坚持下来,新一年要更加努力。工作上,先将挑战完成,立稳脚跟,无论是自己还是团队都有很大可以提升的空间,另一点是要让个人影响力向集团产生能量。

知行合一,又是一年的实践之路,最大的心得就是建立强大的内心。

强大的内心可以让自己在底线上坚持始终。遵守既定的规则,我可以强大到比其他人更好。我做到自己的最好,秉持正义,就是强大的自我。这种内心的强大让我不在乎得失,也就让我凌驾于得失之上思考与做事。古语云得失安之于数,毁誉听之于人,是非审之于己;或曰不以物喜不以己悲。

例如流程上需要文档,文档需要有结构。有的部门迭代,文档是走过场,我们部门为何还一定要要求制式文档。因为我们做得到,不需要投机取巧也可以做到尽善尽美,强大的内心让我们不需要思考是否要做,而是做对的事情,就可以了。做我们认为对的事情,就是内心的强大。

将事情做对,而不是把事情做得足够大、时间足够长。大与长没有意义,价值是正确的结果,追求正确结果的过程。

或许这有一些教条,不过这也是践行自我,是我价值观的体现,做难而正确的事情,是强大内心的体现。

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值