import pandas 使用方法

版权声明:本文为博主 一銤阳光 学习整理的文章,如需转载,请注明出处、附上CSDN博文链接。 https://blog.csdn.net/CSDNhuaong/article/details/80510791

对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。

导入数据

  • pd.read_csv(filename):从CSV文件导入数据
  • pd.read_table(filename):从限定分隔符的文本文件导入数据
  • pd.read_excel(filename):从Excel文件导入数据
  • pd.read_sql(query, connection_object):从SQL表/库导入数据
  • pd.read_json(json_string):从JSON格式的字符串导入数据
  • pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
  • pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
  • pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据

查看、检查数据

df:任意的Pandas DataFrame对象【比如pd的返回值】
s:任意的Pandas Series对象

  • df.head(n):查看DataFrame对象的前n行
  • df.tail(n):查看DataFrame对象的最后n行
  • df.shape():查看行数和列数
  • df.info():查看索引、数据类型和内存信息
  • df.describe():查看数值型列的汇总统计 s.
  • s.value_counts(dropna=False):查看Series对象的唯一值和计数
  • df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数
import pandas as pd

RAW_DATA_DIR = 'data_raw/'

##将一个或多个路径正确地连接起来
sample_tsv_path = os.path.join(RAW_DATA_DIR, 'normal_1/airsim_rec.txt')
#读取数据
sample_tsv = pd.read_csv(sample_tsv_path, sep='\t')
#查看数据
sample_tsv.head()

参考文档

https://blog.csdn.net/qq_33399185/article/details/60872853

没有更多推荐了,返回首页