参考
https://segmentfault.com/a/1190000008131735
MySQL 执行计划中Extra(Using where,Using index,Using index condition,Using index,Using where)的浅析
1、简介
MySQL 提供了一个 EXPLAIN 命令, 它可以对 SELECT 语句进行分析
, 并输出 SELECT 执行的详细信息
, 以供开发人员针对性优化
。EXPLAIN 命令用法十分简单, 在 SELECT 语句前加上 Explain 就可以了, 例如:
EXPLAIN SELECT * from user_info WHERE id < 300;
2、准备
CREATE TABLE `user_info` (
`id` BIGINT(20) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(50) NOT NULL DEFAULT '',
`age` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `name_index` (`name`)
)
ENGINE = InnoDB
DEFAULT CHARSET = utf8
INSERT INTO user_info (name, age) VALUES ('xys', 20);
INSERT INTO user_info (name, age) VALUES ('a', 21);
INSERT INTO user_info (name, age) VALUES ('b', 23);
INSERT INTO user_info (name, age) VALUES ('c', 50);
INSERT INTO user_info (name, age) VALUES ('d', 15);
INSERT INTO user_info (name, age) VALUES ('e', 20);
INSERT INTO user_info (name, age) VALUES ('f', 21);
INSERT INTO user_info (name, age) VALUES ('g', 23);
INSERT INTO user_info (name, age) VALUES ('h', 50);
INSERT INTO user_info (name, age) VALUES ('i', 15);
CREATE TABLE `order_info` (
`id` BIGINT(20) NOT NULL AUTO_INCREMENT,
`user_id` BIGINT(20) DEFAULT NULL,
`product_name` VARCHAR(50) NOT NULL DEFAULT '',
`productor` VARCHAR(30) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)
ENGINE = InnoDB
DEFAULT CHARSET = utf8
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');
3、EXPLAIN 输出格式
EXPLAIN 命令的输出内容大致如下:
mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)
各列的含义如下:
-
id: SELECT 查询的标识符. 每个 SELECT 都会自动分配一个唯一的标识符.查询序号即
为sql语句执行的顺序
. -
select_type: SELECT 查询的类型.
-
table: 查询的是哪个表
-
partitions: 匹配的分区
-
type: join 类型
-
possible_keys: 此次查询中可能选用的索引
-
key: 此次查询中确切使用到的索引.
-
ref: 哪个字段或常数与 key 一起被使用
-
rows: 显示此查询一共扫描了多少行. 这个是一个估计值.
-
filtered: 表示此查询条件所过滤的数据的百分比
-
extra: 额外的信息
接下来我们来重点看一下比较重要的几个字段.
3.1 select_type
select_type 表示了查询的类型
, 它的常用取值有:
-
SIMPLE, 表示此查询不包含 UNION 查询或子查询
-
PRIMARY, 表示此查询是最外层的查询,在
有子查询的语句
中,最外面的select查询就是primary
-
UNION, 表示此查询是 UNION 的第二或随后的查询
-
DEPENDENT UNION, UNION 中的第二个或后面的查询语句, 取决于外面的查询
-
UNION RESULT, UNION 的结果
-
SUBQUERY, 子查询中的第一个 SELECT
-
DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.
最常见的查询类别应该是 SIMPLE 了, 比如当我们的查询没有子查询, 也没有 UNION 查询时, 那么通常就是 SIMPLE 类型, 例如:
mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)
如果我们使用了 UNION 查询, 那么 EXPLAIN 输出 的结果类似如下:
mysql> EXPLAIN (SELECT * FROM user_info WHERE id IN (1, 2, 3))
-> UNION
-> (SELECT * FROM user_info WHERE id IN (3, 4, 5));
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| 1 | PRIMARY | user_info | NULL | range | PRIMARY | PRIMARY | 8 | NULL | 3 | 100.00 | Using where |
| 2 | UNION | user_info | NULL | range | PRIMARY | PRIMARY | 8 | NULL | 3 | 100.00 | Using where |
| NULL | UNION RESULT | <union1,2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | NULL | Using temporary |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)
3.2 table
表示查询涉及的表或衍生表
3.3 type
type字段比较重要, 它提供了判断查询是否高效的重要依据
. 通过 type 字段, 我们判断此次查询
是 全表扫描 还是 索引扫描
等.
通常来说, 不同的 type 类型的性能关系如下
: ALL < index < range ~ index_merge < ref < eq_ref < const < system
. ALL 类型因为是全表扫描
, 因此在相同的查询条件下, 它是速度最慢的
. 而 index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快. 后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.
type 常用的取值有:
-
system:
表中只有一条数据
. 这个类型是特殊的 const 类型
. -
const: 针对
主键或唯一索引
的等值查询扫描,最多只返回一行数据
.const 查询速度非常快
,因为它仅仅读取一次即可
.
例如下面的这个查询, 它使用了主键索引, 因此 type 就是 const 类型的.
mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)
- eq_ref: 此类型通常出现在
多表的 join 查询
,表示对于前表的每一个结果
,都只能匹配到后表的一行结果
. 并且查询的比较操作通常是 =
,查询效率较高
. 例如:
mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: index
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 314
ref: NULL
rows: 9
filtered: 100.00
Extra: Using where; Using index
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: test.order_info.user_id
rows: 1
filtered: 100.00
Extra: NULL
2 rows in set, 1 warning (0.00 sec)
- ref: 此类型通常出现在
多表的 join 查询,
针对于非唯一或非主键索引
, 或者是使用了最左前缀 规则索引
的查询.
例如下面这个例子中, 就使用到了 ref 类型的查询:
mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id AND order_info.user_id = 5\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: ref
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 9
ref: const
rows: 1
filtered: 100.00
Extra: Using index
2 rows in set, 1 warning (0.01 sec)
- range: 表示
使用索引范围查询
, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在=, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN()
操作中.
当 type 是 range 时
, 那么 EXPLAIN 输出的ref 字段为 NULL
, 并且key_len
字段是此次查询中使用到的索引的最长的那个
.
例如下面的例子就是一个范围查询:
mysql> EXPLAIN SELECT *
-> FROM user_info
-> WHERE id BETWEEN 2 AND 8 \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: NULL
rows: 7
filtered: 100.00
Extra: Using where
1 row in set, 1 warning (0.00 sec)
- index: 表示
全索引扫描(full index scan)
,和 ALL 类型类似
, 只不过 ALL 类型是全表扫描
, 而 index 类型则仅仅扫描所有的索引,
而不扫描数据
.
index 类型通常出现在:所要查询的数据直接在索引树中 就可以获取到
,而不需要扫描数据
.当是这种情况时
,Extra 字段 会显示 Using index
.
例如:
mysql> EXPLAIN SELECT name FROM user_info \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: index
possible_keys: NULL
key: name_index
key_len: 152
ref: NULL
rows: 10
filtered: 100.00
Extra: Using index
1 row in set, 1 warning (0.00 sec)
上面的例子中, 我们 查询的name 字段恰好是一个索引,
因此我们直接从索引中获取数据
就可以满足查询的需求了, 而不需要查询表中的数据.
因此这样的情况下, type 的值是 index, 并且 Extra 的值是 Using index.
- ALL: 表示
全表扫描
, 这个类型的查询是性能最差的查询之一
. 通常来说,我们的查询不应该出现 ALL 类型的查询
, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难
.如一个查询是 ALL 类型查询
, 那么一般来说可以对相应的字段添加索引来避免
.
下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.
mysql> EXPLAIN SELECT age FROM user_info WHERE age = 20 \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
filtered: 10.00
Extra: Using where
1 row in set, 1 warning (0.00 sec)
3.4 key_len
表示查询优化器使用了索引的字节数
. 这个字段可以评估组合索引是否完全被使用
, 或只有最左部分字段被使用到
.
key_len 的计算规则如下:
-
字符串
-
char(n):
n 字节长度
-
varchar(n): 如果是
utf8
编码, 则是3 n + 2字节
; 如果是utf8mb4
编码, 则是4 n + 2 字节
.
-
-
数值类型:
-
TINYINT: 1字节
-
SMALLINT: 2字节
-
MEDIUMINT: 3字节
-
INT:
4字节
-
BIGINT:
8字节
-
-
时间类型
-
DATE: 3字节
-
TIMESTAMP: 4字节
-
DATETIME:
8字节
-
-
字段属性:
NULL 属性
占用一个字节
. 如果一个字段是NOT NULL
的,则没有此属性
.
我们来举两个简单的栗子:
mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: range
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 9
ref: NULL
rows: 5
filtered: 11.11
Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)
上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
不过此查询语句 WHERE user_id < 3 AND product_name = ‘p1’ AND productor = ‘WHH’ 中, 因为先进行 user_id 的范围查询
, 而根据 最左前缀匹配
原则, 当遇到范围查询
时, 就停止索引的匹配
, 因此实际上我们使用到的索引的字段只有 user_id
, 因此在 EXPLAIN 中, 显示的 key_len 为 9
. 因为 user_id 字段是 BIGINT, 占用 8 字节
, 而 NULL 属性占用一个字节
, 因此总共是 9 个字节. 若我们将user_id 字段改为 BIGINT(20) NOT NULL DEFAULT '0'
, 则 key_length 应该是8
.
上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 user_id 字段, 因此效率不算高.
接下来我们来看一下下一个例子:
mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = 'p1' \G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: ref
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 161
ref: const,const
rows: 2
filtered: 100.00
Extra: Using index
1 row in set, 1 warning (0.00 sec)
这次的查询中, 我们没有使用到范围查询, key_len 的值为 161
. 为什么呢? 因为我们的查询条件 WHERE user_id = 1 AND product_name = ‘p1’ 中, 仅仅使用到了联合索引中的前两个字段, 因此 keyLen(user_id) + keyLen(product_name)
= 9 + 50 * 3 + 2 = 161
3.5 rows
rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.
这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好
.
3.6 Extra
explain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:
- Using filesort
当 Extra 中有 Using filesort 时, 表示 MySQL需额外的排序操作
, 不能通过索引顺序达到排序效果. 一般有 Using filesort,都建议优化去掉
, 因为这样的查询 CPU 资源消耗大.
例如下面的例子:
mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: index
possible_keys: NULL
key: user_product_detail_index
key_len: 253
ref: NULL
rows: 9
filtered: 100.00
Extra: Using index; Using filesort
1 row in set, 1 warning (0.00 sec)
我们的索引是
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
但是上面的查询中根据 product_name 来排序, 因此不能使用索引进行优化, 进而会产生 Using filesort.
如果我们将排序依据改为 ORDER BY user_id, product_name, 那么就不会出现 Using filesort 了. 例如:
mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: index
possible_keys: NULL
key: user_product_detail_index
key_len: 253
ref: NULL
rows: 9
filtered: 100.00
Extra: Using index
1 row in set, 1 warning (0.00 sec)
-
Using index
“覆盖索引扫描
”, 表示查询在索引树中就可查找所需数据
,不用扫描表数据文件
,往往说明性能不错
-
Using temporary
查询有使用临时表
, 一般出现于排序, 分组和多表 join
的情况,查询效率不高, 建议优化
.
4、Extra
4.1 Using where
表示MySQL服务器在存储引擎收到记录后进行“后过滤”(Post-filter),如果查询未能使用索引,Using where的作用只是提醒我们MySQL将用where子句来过滤结果集。这个一般发生在MySQL服务器,而不是存储引擎层。一般发生在不能走索引扫描的情况下或者走索引扫描,但是有些查询条件不在索引当中的情况下。
4.2 Using temporary
表示MySQL需要使用临时表来存储结果集,常见于排序和分组查询
4.3 Using filesort
MySQL中无法利用索引完成的排序操作称为“文件排序”
4.4 Using Index
表示直接访问索引就能够获取到所需要的数据(覆盖索引),不需要通过索引回表;
注意:执行计划中的Extra列的“Using index”跟type列的“index”不要混淆。Extra列的“Using index”表示索引覆盖。而type列的“index”表示Full Index Scan(扫描全部索引,类似全表扫描)。
覆盖索引:
如果一个索引包含(或者说覆盖)所有需要查询的字段的值。我们称之为“覆盖索引”。如果索引的叶子节点中已经包含要查询的数据,那么还有什么必要再回表查询呢?
4.5 Using Index Condition
在MySQL 5.6版本后加入的新特性(Index Condition Pushdown);会先条件过滤索引,过滤完索引后找到所有符合索引条件的数据行,随后用 WHERE 子句中的其他条件去过滤这些数据行;
关于ICP的相关资料,摘抄其它博客的两段介绍:
- a 当关闭ICP时:Index仅仅是data access的一种访问方式,存储引擎通过索引回表获取的数据会传递到MySQL Server 层进行WHERE条件过滤。
- b 当打开ICP时:如果部分WHERE条件能使用索引中的字段,MySQL Server 会把这部分下推到引擎层,可以利用Index过滤的WHERE条件在存储引擎层进行数据过滤,而非将所有通过Index Access的结果传递到MySQL Server层进行WHERE过滤.
ICP(index condition pushdown)是MySQL利用索引(二级索引)元组和筛字段在索引中的WHERE条件从表中提取数据记录的一种优化操作。ICP的思想是:存储引擎在访问索引的时候检查筛选字段在索引中的WHERE条件(pushed index condition,推送的索引条件),如果索引元组中的数据不满足推送的索引条件,那么就过滤掉该条数据记录。ICP(优化器)尽可能的把index condition的处理从Server层下推到Storage Engine层。Storage Engine使用索引过过滤不相关的数据,仅返回符合Index Condition条件的数据给Server层。也是说数据过滤尽可能在Storage Engine层进行,而不是返回所有数据给Server层,然后后再根据WHERE条件进行过滤。
mysql> select version();
+-----------+
| version() |
+-----------+
| 5.6.41 |
+-----------+
1 row in set (0.00 sec)
mysql> set optimizer_switch='index_condition_pushdown=on';
Query OK, 0 rows affected (0.00 sec)
mysql> explain
-> select * from rental
-> where rental_date = '2006-02-14 15:16:03'
-> and customer_id >= 300
-> and customer_id <= 400;
+--+-----------+------+-----+-------------------+-----------+--------+-------+------+----------------------+
|id|select_type|table| type | possible_keys | key |key_len |ref | rows | Extra |
+--+-----------+------+-----+-------------------+-----------+--------+-------+------+----------------------+
|1 |SIMPLE |rental| ref |rental_date,idx_… |rental_date| 5 | const | 181 | Using index condition
+--+-----------+------+-----+-------------------------------+--------+-------+-------+------+--------------+
1 row in set (0.00 sec)
mysql> set optimizer_switch='index_condition_pushdown=off';
Query OK, 0 rows affected (0.00 sec)
mysql> explain
-> select * from rental
-> where rental_date = '2006-02-14 15:16:03'
-> and customer_id >= 300
-> and customer_id <= 400;
+----+-------------+--------+------+--------------------------------+-------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+--------------------------------+-------------+---------+-------+------+-------------+
| 1 | SIMPLE | rental | ref | rental_date,idx_fk_customer_id | rental_date | 5 | const | 181 | Using where |
+----+-------------+--------+------+--------------------------------+-------------+---------+-------+------+-------------+
1 row in set (0.00 sec)
mysql>