漫画:为什么程序员喜欢使用 0 ≤ i < 10 左闭右开形式写 for 循环?

作者 | 漫话编程

来源 | 漫话编程(ID:mhcoding)

当我们想要写一个循环体,期望执行10次的时候,我们会使用以下方式:

for (int i=0; i<10; i++){

}

可以看到,为了保证循环10次,我们定义了一个整数变量从0开始,然后循环10次,结束条件是i < 10。

其实这个本质就是使用了0 ≤ i < 10这种表达形式。

之所以很多人都这么写,有一个最主要的原因就是刚开始学编程的时候,老师都是这么教的…

关于这个问题,其实还有一位伟大的数学家曾经讨论过他的合理性。

这个人就是Dijkstra,他也是离散数学中应用广泛的最短路径算法的提出者,并且还提出了银行家算法。

他在1982年发表了一篇说明《Why numbering should start at zero》,这里面有部分内容阐述了这个观点。

他首先提出一个问题,让我们通过一个条件表达式表示 2,3,4,5,6,7,8,9,10,11,12 这11个数字,其实一般有以下四种写法:

  • a) 2 ≤ i < 13

  • b) 1 < i ≤ 12

  • c) 2 ≤ i ≤ 12

  • d) 1 < i < 13

这几种也是我们在写for循环的时候可能会用到的一些表示式,那着四种写法有没有好坏之分呢?

答案是有的。

我们其实可以观察到,a) 和 b)有个优点,上下边界的相减得到的差,正好等于子序列的长度,即13-2 = 12-1 = 11; 这样的写法可以让我们快速知道这个表示表达式中一共包含多少个自然数。

当然,这并不是正菜,只是开胃而已…

接下来,Dijkstra分别从表达式的上下界讨论了到底使用≤还是<更合理。

首先,他论证了一下表达式的下界使用哪种形式合理。

他认为,当我们想要表达自然数2-12的时候,如果使用1 < i作为这个序列的下界的话,这个下界的起始值进入了非自然数的区域。而使用2 ≤ i,那么就可以严格的保证这个下界就是一个自然数2 。所以,他认为下界使用≤更加合理。

符合这种形式的就是a) 和 c)两种。

那么a) 和 c)还有一个区别,就是上界一个用了≤一个用了<,那该使用哪种方式更加合适呢?

Dijkstra提出,如果想要表达一个空序列,使用a) 形式可以很容易的表达,如 0<= i <0就可以表示一个空序列。

但是如果上界和下界都用<= 就无法表示了,除非用1 <= i <= 0,但是这种形式就很不合逻辑。

所以,综上,他认为a) 2 ≤ i < 13 这种表达方式更加合理一些。

也就是说,使用左闭右开的形式定义表达式合理也更加优雅!

参考资料:

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

关于作者:漫话编程,是一个通过漫画+音频的形式讲解枯燥的编程知识的公众号。致力于让编程变得更有乐趣。

更多精彩推荐
☞密码界“女杀手”,破译世上最安全密码系统,获 771 万奖金!
☞字节跳动 8 年,抖音、头条的技术能力开发者都可以用起来了!
☞他被称为"中国第一程序员",一人之力单挑微软,如今拜入武当修道
☞高文、张钹、杨强隔空论道:AI精度与隐私的博弈
☞带你从零入门 Serverless | 一文详解 Serverless 架构模式
☞中央银行数字货币的总体框架
你点的每个“在看”,我都认真当成了喜欢
展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值