限量!“Java成长笔记”Spring Boot/Sentinel/Nacos高并发

这是一份全面的Java面试手册,涵盖了从基础到高级的知识点,包括Java基础、Web编程、SSM框架、SpringBoot、并发编程、JVM深入解析、微服务、数据库和中间件等。特别适合1-5年经验的Java开发者进行面试复习,通过扫描二维码可免费获取PDF文档和架构师精选视频,助你快速提升技能。

前言

本文是为了帮大家快速回顾了Java中知识点,这套面试手册涵盖了诸多Java技术栈的面试题和答案,相信可以帮助大家在最短的时间内用作面试复习,能达到事半功倍效果。

本来想将文件上传到github上,但由于文件太大有的都无法显示所以直接整理成多个PDF,供大家学习,也能为老铁们省去不少麻烦,想学什么技能了,遇到哪方面的问题了 直接打开文档学一学就好了。不多说,直接上干货!

一、Java成长笔记:

1.Java基础复盘

2.Web编程初探

3.SSM从入门到精通

4.SpringBoot快速上手

这套面试手册的组成内容主要有以上3大主题,5个主要模块,35个小板块

长按扫码,领取资料

注意!限今天!

二、1-3年高工

1.并发编程进阶

2.JVM深度剖析

3.微服务

4.深入Tomcat底层

三、3-5年资深

1.数据库

2.中间件&分布式

这套面试手册的组成内容主要有以上3大主题,5个主要模块,35个小板块

长按扫码,领取资料

注意!限今天!

额外福利

同时,还有一份珍贵的 Java 进阶资料免费共享给大家!不论是高级开发和运维工程师,知识的 广度和深度,决定了你的职场上限!


领取方式
PDF文档+架构师精选视频需要加助教小姐姐微信免费领取
备注【CSDN】这样小姐姐才能更快添加您为好友哦~

点击阅读原文,领取学习资料

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值