程序人生的博客

CSDN程序人生公众号官方博客

送书&优惠丨对深度学习感兴趣的你,不了解这些就太OUT了!

点击上方“程序人生”,选择“置顶公众号”

第一时间关注程序猿(媛)身边的故事

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

TensorFlow是什么?

640?wx_fmt=png&wxfrom=5&wx_lazy=1

TensorFlow的前身是谷歌大脑(google brain)团队研发的DistBelief。自创建以来,它便被数十个团队应用于包括深度神经网络在内的不计其数的项目中。然而,像许多开创性工程项目一样,DistBelief也存在一些限制了其易用性和灵活性的设计错误。后来,谷歌发起了新的项目,它就是TensorFlow,是目前最为流行的开源深度学习框架,在图形分类、音频处理、推荐系统和自然语言处理等场景下都有丰富的应用。


尽管功能强大,它的框架学习门槛却并不高,只要掌握Python安装和使用,并对机器学习和神经网络方面的知识有所了解就可以上手。


Theano又是什么?

640?wx_fmt=png

Theano是一个Python库,可以在CPU或GPU上运行快速数值计算。这是Python深度学习中的一个关键基础库,你可以直接用它来创建深度学习模型或包装库,大大简化了程序。


Python的核心Theano是一个数学表达式的编译器。它知道如何获取你的结构,并使之成为一个使用numpy、高效本地库的非常高效的代码,如BLAS和本地代码(C++),在CPU或GPU上尽可能快地运行。它巧妙的采用一系列代码优化从硬件中攫取尽可能多的性能。如果你对代码中的数学优化的基本事实感兴趣,看看这个有趣的名单。


Theano是为深度学习中处理大型神经网络算法所需的计算而专门设计的。它是这类库的首创之一,被认为是深度学习研究和开发的行业标准。


因此,大家都称Theano为深度学习框架的祖师爷!


一封告别信,Theano消失?

640?wx_fmt=gif


Yoshua Bengio教授的一封邮件宣布Theano完成历史使命。如果你认为Theano已死,那就大错特错了!


从现在的主流模型之中,我们仍然可以看到Theano的影子。它并没有死,而是影响着许许多多的模型。事实上,Theano的很多开发人员都去谷歌参与TensorFlow的开发了,其中包括早期开发成员Ian Goodfellow。而后起之秀Tensorflow在功能上与Theano十分相似,性能也更加优化。


从Theano到Tensorflow,横向对比七大深度学习框架


来自数据科学公司 Silicon Valley Data Science 的数据工程师 Matt Rubashkin(UC Berkeley 博士)就Theano、TensorFlow、Torch、Caffe、MXNet、Neon 和 CNTK等7种流行框架进行了一次横向对比。

640?wx_fmt=jpeg


最后的结果是:如果你想要开始深度学习,你应该从评估自己的团队技能和业务需求开始。例如,如果一个以Python为中心的团队想开发图像识别的应用程序,你应该使用TensorFlow,因为它有丰富的资源,较好性能和完整的原型工具。


如果你使用的是Tensorflow,那你一定要学习Theano!

640?wx_fmt=jpeg

主要内容

1.《基于Theano的深度学习:构建未来与当前的人工大脑》介绍了深度学习的基本概念和Theano在深度学习中的应用。


2.《基于TensorFlow的深度学习:揭示数据隐含的奥秘》介绍了 TensorFlow的入门知识,及其在深度神经网络、卷积神经网络、递归神经网络中的应用,并通过具体示例进行了详细分析与应用。


作者简介

1.Christopher Bourez于巴黎综合理工大学和卡尚高等师范学院获得数学、机器学习和计算机视觉(MVA)的硕士学位。在Packt出版社的积极倡导下,将其撰写的Caffe、TensorFlow或Torch教程的成功经验移植到Theano技术的本书上。


2.Dan Van Boxel 是一位拥有10 多年开发经验的数据分析师和机器学习工程师,其具代表性的工作是Dan Dose Data,这是一个在YouTube 上演示神经网络强大功能和缺陷的直播平台。


编辑推荐

Theano是一个能够在CPU或GPU上便于优化数值表示和深度学习模型的Python库。《基于Theano的深度学习:构建未来与当前的人工大脑》提供了一些实用代码示例,有助于初学者易于理解如何构建复杂神经网络,而对于有经验的数据分析师会更关注书中的相关内容,解决图像识别、自然语言处理和博弈决策领域的监督式学习和非监督式学习、生成模型和强化学习。


阅读本书将会学到的内容:


•熟悉Theano和深度学习的概念;

•给出监督式、非监督式、生成或强化学习的示例;

•揭示设计高效深度学习网络的主要原则:卷积、残差连接和递归连接;

•Theano在实际计算机视觉数据集中的应用,如数字分类和图像分类;

•将Theano扩展到自然语言处理任务,如聊天机器人或机器翻译;

•人工智能驱动策略以使得机器人能够解决博弈问题或从环境中学习;

•基于生成模型生成真实的合成数据;

•熟悉应用于Theano上层的两个框架:Lasagne和Keras。


深度学习是目前的热点研究领域之一,而TensorFlow是由Google公司开发,研究深度学习的重要开源软件库。《基于Theano的深度学习:构建未来与当前的人工大脑》是在作者Dan的TensorFlow畅销视频课程基础上编著完成的。作者介绍了各种复杂的深度学习算法以及各种深度神经网络的应用案例,分享了其宝贵的经验和知识,通过实践示例的帮助下,你将成为在先进多层神经网络、图像识别以及其他方面的高手。


阅读本书将会学到的内容:

•配置计算环境和安装TensorFlow;

•构建日常计算的简单TensorFlow图;

•基于TensorFlow的逻辑回归分类应用;

•利用TensorFlow设计和训练多层神经网络;

•直观理解卷积神经网络在图像识别中的应用;

•神经网络从简单模型到更精准模型的改进;

•TensorFlow在其他类型神经网络中的应用;

•基于一种TensorFlow高级接口——SciKit Flow的神经网络编程。


640?wx_fmt=jpeg


本期荐书评奖规则

在本文下方留言,用30+个字符,描述你想要这本书的理由。

我们会从留言用户中,按照留言点赞数,抽取排名在第3、5、9、11和第15名的5位幸运者,送出本期2本荐书中的1本。


开奖时间:5月4日当天(以当天小编开奖时看到的名次顺序为准)

若未抽中者,也可点击下方「阅读原文」以五折优惠价超值购买。


半折优惠时间:5月3日至6日(欲购从速)

这里有个读书交流群,了解一下?

640?wx_fmt=jpeg

无法扫码进群,可加编辑微信,备注#深度学习#,待编辑核实后,会拉你入群。

程序 微信ID:druidlost

小七 微信ID:duoshangshuang

没有更多推荐了,返回首页