漫画:深度优先遍历和广度优先遍历

640?wx_fmt=gif

640?wx_fmt=jpeg640?wx_fmt=jpeg

 

 

—————  第二天  —————

 

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

————————————

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

 

什么是 深度/广度 优先遍历?

深度优先遍历简称DFS(Depth First Search),广度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种方式。

这两种遍历方式有什么不同呢?我们来举个栗子:

我们来到一个游乐场,游乐场里有11个景点。我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?

 

640?wx_fmt=png

第一种是一头扎到底的玩法。我们选择一条支路,尽可能不断地深入,如果遇到死路就往回退,回退过程中如果遇到没探索过的支路,就进入该支路继续深入。

在图中,我们首先选择景点1的这条路,继续深入到景点7、景点8,终于发现走不动了(景点旁边的数字代表探索次序):

640?wx_fmt=png

于是,我们退回到景点7,然后探索景点10,又走到了死胡同。于是,退回到景点1,探索景点9:

640?wx_fmt=png

按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、6,终于玩遍了整个游乐场:

640?wx_fmt=png

像这样先深入探索,走到头再回退寻找其他出路的遍历方式,就叫做深度优先遍历(DFS)

640?wx_fmt=jpeg

640?wx_fmt=jpeg

除了像深度优先遍历这样一头扎到底的玩法以外,我们还有另一种玩法:首先把起点相邻的几个景点玩遍,然后去玩距离起点稍远一些(隔一层)的景点,然后再去玩距离起点更远一些(隔两层)的景点......

在图中,我们首先探索景点0的相邻景点1、2、3、4:

 

640?wx_fmt=png

接着,我们探索与景点0相隔一层的景点7、9、5、6:

 

640?wx_fmt=png

最后,我们探索与景点0相隔两层的景点8、10:

 

640?wx_fmt=png

像这样一层一层由内而外的遍历方式,就叫做广度优先遍历(BFS)

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

深度/广度优先遍历 的实现

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

深度优先遍历

首先说说深度优先遍历的实现过程。这里所说的回溯是什么意思呢?回溯顾名思义,就是自后向前,追溯曾经走过的路径。

我们把刚才游乐场的例子抽象成数据结构的图,假如我们依次访问了顶点0、1、7、8,发现无路可走了,这时候我们要从顶点8退回到顶点7。

640?wx_fmt=png

而后我们探索了顶点10,又无路可走了,这时候我们要从顶点10退回到顶点7,再退回到顶点1。

 

640?wx_fmt=png

像这样的自后向前追溯曾经访问过的路径,就叫做回溯。

要想实现回溯,可以利用栈的先入后出特性,也可以采用递归的方式(因为递归本身就是基于方法调用栈来实现)。

下面我们来演示一下具体实现过程。

首先访问顶点0、1、7、8,这四个顶点依次入栈,此时顶点8是栈顶:

640?wx_fmt=png

从顶点8退回到顶点7,顶点8出栈:

640?wx_fmt=png

接下来访问顶点10,顶点10入栈:

640?wx_fmt=png

从顶点10退到顶点7,从顶点7退到顶点1,顶点10和顶点7出栈:

 

640?wx_fmt=png

探索顶点9,顶点9入栈:

640?wx_fmt=png

以此类推,利用这样一个临时栈来实现回溯,最终遍历完所有顶点。

广度优先遍历

接下来该说说广度优先遍历的实现过程了。刚才所说的重放是什么意思呢?似乎听起来和回溯差不多?其实,回溯与重放是完全相反的过程。

仍然以刚才的图为例,按照广度优先遍历的思想,我们首先遍历顶点0,然后遍历了邻近顶点1、2、3、4:

640?wx_fmt=png

接下来我们要遍历更外围的顶点,可是如何找到这些更外围的顶点呢?我们需要把刚才遍历过的顶点1、2、3、4按顺序重新回顾一遍,从顶点1发现邻近的顶点7、9;从顶点3发现邻近的顶点5、6。

640?wx_fmt=png

像这样把遍历过的顶点按照之前的遍历顺序重新回顾,就叫做重放。同样的,要实现重放也需要额外的存储空间,可以利用队列的先入先出特性来实现。

下面我们来演示一下具体实现过程。

首先遍历起点顶点0,顶点0入队:

640?wx_fmt=png

接下来顶点0出队,遍历顶点0的邻近顶点1、2、3、4,并且把它们入队:

640?wx_fmt=png

然后顶点1出队,遍历顶点1的邻近顶点7、9,并且把它们入队:

640?wx_fmt=png

然后顶点2出队,没有新的顶点可入队:

640?wx_fmt=png

以此类推,利用这样一个队列来实现重放,最终遍历完所有顶点。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
/**	
	
    图的顶点	
	
    / private static class Vertex { int data; Vertex(int data) {    this.data = data; } } /*	
	
    图(邻接表形式)	
	
    / private static class Graph { private int size; private Vertex[] vertexes; private LinkedList adj[]; Graph(int size){    this.size = size;    //初始化顶点和邻接矩阵    vertexes = new Vertex[size];    adj = new LinkedList[size];    for(int i=0; i*	
	
    深度优先遍历	
	
    / public static void dfs(Graph graph, int start, boolean[] visited) { System.out.println(graph.vertexes[start].data); visited[start] = true; for(int index : graph.adj[start]){    if(!visited[index]){        dfs(graph, index, visited);    } } } /*	
	
    广度优先遍历	
	
    */	
	
    public static void bfs(Graph graph, int start, boolean[] visited, LinkedList queue) {	
	
    queue.offer(start);	
	
    while (!queue.isEmpty()){	
	
       int front = queue.poll();	
	
       if(visited[front]){	
	
           continue;	
	
       }	
	
       System.out.println(graph.vertexes[front].data);	
	
       visited[front] = true;	
	
       for(int index : graph.adj[front]){	
	
           queue.offer(index);;	
	
       }	
	
    }	
	
    }	
	
    public static void main(String[] args) {	
	
    Graph graph = new Graph(6);	
	
    graph.adj[0].add(1);	
	
    graph.adj[0].add(2);	
	
    graph.adj[0].add(3);	
	
    graph.adj[1].add(0);	
	
    graph.adj[1].add(3);	
	
    graph.adj[1].add(4);	
	
    graph.adj[2].add(0);	
	
    graph.adj[3].add(0);	
	
    graph.adj[3].add(1);	
	
    graph.adj[3].add(4);	
	
    graph.adj[3].add(5);	
	
    graph.adj[4].add(1);	
	
    graph.adj[4].add(3);	
	
    graph.adj[4].add(5);	
	
    graph.adj[5].add(3);	
	
    graph.adj[5].add(4);	
	
    System.out.println("图的深度优先遍历:");	
	
    dfs(graph, 0, new boolean[graph.size]);	
	
    System.out.println("图的广度优先遍历:");	
	
    bfs(graph, 0, new boolean[graph.size], new LinkedList());	
	
    }

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

以上内容来自《漫画算法》

640?wx_fmt=png

扫码查看详情

640?wx_fmt=png

小灰把两年多以来积累的漫画作品进行了筛选和优化,并加上了一些更为基础和系统的入门章节,最终完成了本书的六大篇章:

第一章 算法概述

介绍了算法和数据结构的相关概念,告诉大家算法是什么,数据结构又是什么,它们有哪些用途,如何分析时间复杂度,如何分析空间复杂度。

第二章 数据结构基础

介绍了最基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。

第三章 树

介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉堆和优先队列的应用。

第四章 排序算法

介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。

第五章 面试中的算法

介绍了10余道职场上流行的算法面试题及详细的解题思路。例如怎样判断链表有环、怎样计算大整数相加等。

第六章 算法的实际应用

介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算法来统计用户特征等。

本书是全彩印制,书中的每一章、每一节、每一句话、每一幅图、每一行代码,都经过了小灰和编辑们的精心打磨,力求用最为直白的方式把知识讲明白、讲透彻。

640?wx_fmt=png

 

640?wx_fmt=png

早期的漫画中存在一些叙述错误和表达不清晰的地方,小灰在本书中做了修正和补充;同时书中增加了许多全新的篇章,使得本书的内容更加系统和全面。

从零开始的 Python 爬虫速成指南,实用!

https://edu.csdn.net/topic/python115?utm_source=cxrs_bw

对于渴望学习算法的小伙伴,无论你是正在学习计算机专业的学生,还是已经进入职场的新人,亦或是拥有多年工作经验却不擅长算法的老手,这本《漫画算法》都能帮助你告别对算法的恐惧,认识算法、掌握算法。

扫码或者点击阅读原文购买

640?wx_fmt=png

购买前可使用优惠券哦

优惠券领取二维码如下

640?wx_fmt=png

640?wx_fmt=gif

 

码书商店是CSDN专为我们的用户建立的一个商店,这里提供大量的技术书籍,除了书籍我们也提供生活类的相关产品,如耳机、键盘等,或者你们如果有需求也可以联系码书商店的客服或者在公众号下留言你们需要的产品,我们尽量满足大家需求哦。

作为码书商店的运营人员,诚邀你们进入我们的“CSDN码书福利群”,群里会不定时的给大家赠书书籍、优惠券等,若加入时显示二维码已过期,也可加微信号“xthmily”,会拉你入群哦

640?wx_fmt=png

 

点击“阅读原文”

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值