logistic回归报错问题:Warning messages: 1: glm.fit:算法没有聚合 2: glm.fit:拟合機率算出来是数值零或一

11024人阅读 评论(0) 收藏 举报
分类:

logistic回归的时候报错问题包括下面两种

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred 

Warning messages:

1: glm.fit:算法没有聚合 

2: glm.fit:拟合機率算出来是数值零或一 

做logistic回归的时候这个问题比较常见,下面来举例,为什么会出现这些问题。

首先是glm函数介绍:

glm(formula, family=family.generator, data,control = list(...))

family:每一种响应分布(指数分布族)允许各种关联函数将均值和线性预测器关联起来。

 常用的family:

binomal(link='logit')         ----响应变量服从二项分布,连接函数为logit,即logistic回归

binomal(link='probit')       ----响应变量服从二项分布,连接函数为probit

poisson(link='identity')     ----响应变量服从泊松分布,即泊松回归

 

control:控制算法误差和最大迭代次数

glm.control(epsilon = 1e-8, maxit = 25, trace = FALSE)  

     -----maxit:算法最大迭代次数,改变最大迭代次数:control=list(maxit=100)

 glm函数使用:

library("ggplot2")
data<-iris[1:100,]
samp<-sample(100,80)
names(data)<-c('sl','sw','pl','pw','species')
testdata<-data[samp,]
traindata<-data[-samp,]
lgst<-glm(testdata$species~pl,binomial(link='logit'),data=testdata)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(lgst)
## 
## Call:
## glm(formula = testdata$species ~ pl, family = binomial(link = "logit"), 
##     data = testdata)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.202e-05  -2.100e-08  -2.100e-08   2.100e-08   3.233e-05  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -97.30   87955.20  -0.001    0.999
## pl             39.56   34756.04   0.001    0.999
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1.1045e+02  on 79  degrees of freedom
## Residual deviance: 2.0152e-09  on 78  degrees of freedom
## AIC: 4
## 
## Number of Fisher Scoring iterations: 25

 

注意在使用glm函数就行logistic回归时,出现警告:

Warning messages:
1: glm.fit:算法没有聚合 
2: glm.fit:拟合機率算出来是数值零或一

同时也可以发现两个系数的P值都为0.999,说明回归系数不显著。

第一个警告:算法不收敛。
     由于在进行logistic回归时,依照极大似然估计原则进行迭代求解回归系数,glm函数默认的最大迭代次数 maxit=25,当数据不太好时,经过25次迭代可能算法 还不收敛,所以可以通过增大迭代次数尝试解决算法不收敛的问题。但是当增大迭代次数后算法仍然不收敛,此时数据就是真的不好了,需要对数据进行奇异值检验等进一步的处理。

lgst<-glm(testdata$species~pl,binomial(link='logit'),data=testdata,control=list(maxit=100))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(lgst)
## 
## Call:
## glm(formula = testdata$species ~ pl, family = binomial(link = "logit"), 
##     data = testdata, control = list(maxit = 100))
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -8.134e-06  -2.110e-08  -2.110e-08   2.110e-08   1.204e-05  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -106.14  237658.98       0        1
## pl              43.16   93735.01       0        1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1.1070e+02  on 79  degrees of freedom
## Residual deviance: 2.7741e-10  on 78  degrees of freedom
## AIC: 4
## 
## Number of Fisher Scoring iterations: 27

如上,通过增加迭代次数,解决了第一个警告,此时算法收敛。

但是第二个警告仍然存在,且回归系数P=1,仍然不显著。

 

第二个警告:拟合概率算出来的概率为0或1

首先,这个警告是什么意思?
我们先来看看训练样本的logist回归结果,拟合出的每个样本属于'setosa'类的概率为多少?

 

lgst<-glm(testdata$species~pl,binomial(link='logit'),data=testdata,control=list(maxit=100))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
p<-predict(lgst,type='response')
qplot(seq(-2,2,length=80),sort(p),col='predict')


可以看出训练样本为'setosa'类的概率不是几乎为0,就是几乎为1,并不是我们预想中的logistic模型的S型曲线,这就是第二个警告的意思。

 

  那么问题来了,为什么会出现这种情况?
 (以下内容只是本人参考一些解释的个人理解)

  这种情况的出现可以理解为一种过拟合,由于数据的原因,在回归系数的优化搜索过程中,使得分类的种类属于某一种类(y=1)的线性拟合值趋于大,分类种类为另一   类(y=0)的线性拟合值趋于小。

由于在求解回归系数时,使用的是极大似然估计的原理,即回归系数在搜索过程中使得似然函数极大化:

 

                                                      

 

 

所以在搜索过程中偏向于使得y=1的h(x)趋向于大,而使得y=0的h(x)趋向于小。

 

                                                                

即系数Θ使得 Y=1类的 -ΘTX 趋向于大,使得Y=0类的 -ΘTX 趋向于小。而这样的结果就会导致P(y=1|x;Θ)-->1  ; P(y=0|x;Θ)-->0  .

 

那么问题又来了,什么样的数据会导致这样的过拟合产生呢?

 先来看看上述logistic回归中种类为setosa和versicolor的样本pl值的情况。(横轴代表pl值,为了避免样本pl数据点叠加在一起,增加了一个无关的y值使样本点展开)

testdata$y <- c(1:80)
qplot(pl,y,data =testdata,colour =factor(species))


可以看出两类数据明显的完全线性可分

故在回归系数搜索过程中只要使得一元线性函数h(x)的斜率的绝对值偏大,就可以实现y=1类的h(x)趋向大,y=0类的h(x)趋向小。

所以当样本数据完全可分时,logistic回归往往会导致过拟合的问题,即出现第二个警告:拟合概率算出来的概率为0或1。

出现了第二个警告后的logistic模型进行预测时往往是不适用的,对于这种线性可分的样本数据,其实直接使用规则判断的方法则简单且适用(如当pl<2.5时则直接判断为setosa类,pl>2.5时判断为versicolor类)。

 

以下,对于不完全可分的二维训练数据展示logistic回归过程。

 

data<-iris[51:150,]
samp<-sample(100,80)
names(data)<-c('sl','sw','pl','pw','species')
testdata<-data[samp,]
traindata<-data[-samp,]
lgst<-glm(testdata$species~sw+pw,binomial(link='logit'),data=testdata)
summary(lgst)
## 
## Call:
## glm(formula = testdata$species ~ sw + pw, family = binomial(link = "logit"), 
##     data = testdata)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.68123  -0.12839  -0.01807   0.07783   2.24191  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -12.792      5.828  -2.195 0.028168 *  
## sw            -4.214      1.970  -2.139 0.032432 *  
## pw            15.229      3.984   3.823 0.000132 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 110.854  on 79  degrees of freedom
## Residual deviance:  21.382  on 77  degrees of freedom
## AIC: 27.382
## 
## Number of Fisher Scoring iterations: 7


拟合概率曲线图:(基本上符合logistic模型的S型曲线)

p<-predict(lgst,type='response')
qplot(seq(-2,2,length=80),sort(p),col="response")


训练样本散点图及分类边界:

(画logistic回归的分类边界即画曲线h(x)=0.5)

x3<-seq(1.5,4,length=80)
y3<-(4.284/15.656)*x3+13.447/15.656
aaa<-data.frame(x3,y3)

p <- ggplot()
p+geom_point(data = testdata,aes(x=sw,y=pw,colour=factor(species)))+
geom_line(data = aaa,aes(x = x3,y = y3,colour="line"))


 内容参考于原博主,为加深印象,我自己做了一遍,图换成了ggplot2,原文参考如下连接:

查看评论

使用 MATLAB 的 fitlm 函数进行线性回归

今天在做《数理统计》关于线性回归的作业,本来用R已经做出来了,但是由于最近使用matlab很多,所以也想看看用matlab怎么做。 matlab中有很多函数可以做各种各样的回归,也有cftool工具...
  • u010099080
  • u010099080
  • 2015-12-21 16:56:15
  • 8512

logit和probit的区别

logit和probit的区别: 1. y* = x'b + e中,对e的分布的设定不同。logit模型中,e服从标准logistic分布;probit模型中,e服从标准正态分布。 2. 两个模型...
  • u011773702
  • u011773702
  • 2016-10-31 21:15:40
  • 971

R语言笔记之广义线性模型压缩方法2

逻辑回归 1.普通逻辑回归 在逻辑回归中,当变量个数相对观测较大时,很容易发生完全分离或者准完全分离的现象,这时候没有唯一的极大似然估计,因此参数估计的方差极大。> dat=read.csv("h...
  • lulujiang1996
  • lulujiang1996
  • 2018-01-15 15:05:41
  • 118

聚合算法总结

聚合算法是将简单算法混合或组合起来的算法。它既具有限制欠拟合的能力,又具有限制过拟合的能力,合理使用将能获得很好的效果。本文是对聚合算法的总结。...
  • kaka19880812
  • kaka19880812
  • 2015-09-10 20:42:50
  • 926

关于Untiy中数值传递的问题

如图
  • sinat_29795843
  • sinat_29795843
  • 2016-04-04 17:11:25
  • 144

KNN算法在保险业精准营销中的应用

版权所有,可以转载,禁止修改。转载请注明作者以及原文链接。一、KNN算法概述KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法。即...
  • wyabcde
  • wyabcde
  • 2016-06-20 18:04:10
  • 415

5分钟,6行代码教你写爬虫!(python)

5分钟,6行代码教你写会爬虫! 适用人士:对数据量需求不大,简单的从网站上爬些数据。 好,不浪费时间了,开始! 先来个例子:输入以下代码(共6行)import requests from lxm...
  • csqazwsxedc
  • csqazwsxedc
  • 2017-03-30 20:52:51
  • 14841

R中logistics回归分析以及K-CV

K倍交叉验证是对模型的性能进行评估,可以用来防止过拟合,比如对决策树节点数目的确定或是回归模型参数个数地决定等情况。 1.对于一些特殊数据来说,在调用glm()方法时候,会出现两种常见错误 War...
  • m0_37119401
  • m0_37119401
  • 2017-04-30 13:03:02
  • 1485

数值拟合

import numpy def polyfit(x, y, degree):     results = {}     coeffs = numpy.polyfit(x, y, deg...
  • shaonian7812
  • shaonian7812
  • 2015-09-18 09:08:25
  • 199

算法练习(1) - Sumsets(2709)&Message Decowding(2716)

Sumsets(2709)The cows are thrilled because they’ve just learned about encrypting messages. They thin...
  • b9x__
  • b9x__
  • 2017-12-23 19:34:48
  • 33
    个人资料
    等级:
    访问量: 18万+
    积分: 1577
    排名: 3万+
    最新评论