运行tensorflow版本的faster-RCNN可能出现的问题

 

(1)在错误的旁边会有这样的地址,你需要

/opt/python27/local/lib/python2.7/site-packages/tensorflow/include/tensorflow/core/platform/default/mutex.h

这个文件,然后将里面的

#include "nsync_cv.h"
#include "nsync_mu.h"

改为

#include "external/nsync/public/nsync_cv.h"
#include "external/nsync/public/nsync_mu.h"

然后重新make,就没有问题了

(2)修改Faster-RCNN_TF/lib/make.sh文件如下:

TF_INC=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())')
TF_LIB=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_lib())')
CUDA_PATH=/usr/local/cuda/
CXXFLAGS=''

if [[ "$OSTYPE" =~ ^darwin ]]; then
	CXXFLAGS+='-undefined dynamic_lookup'
fi

cd roi_pooling_layer

if [ -d "$CUDA_PATH" ]; then
	nvcc -std=c++11 -c -o roi_pooling_op.cu.o roi_pooling_op_gpu.cu.cc \
		-I $TF_INC -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC $CXXFLAGS \
		-arch=sm_37

	#g++ -std=c++11 -shared -o roi_pooling.so roi_pooling_op.cc \
	#	roi_pooling_op.cu.o -I $TF_INC  -D GOOGLE_CUDA=1 -fPIC $CXXFLAGS \
	#	-lcudart -L $CUDA_PATH/lib64
        g++ -std=c++11 -shared -o roi_pooling.so roi_pooling_op.cc -D_GLIBCXX_USE_CXX11_ABI=0 \
           roi_pooling_op.cu.o -I $TF_INC -L $TF_LIB -ltensorflow_framework -D GOOGLE_CUDA=1 \
           -fPIC $CXXFLAGS -lcudart -L $CUDA_PATH/lib64
else
	g++ -std=c++11 -shared -o roi_pooling.so roi_pooling_op.cc \
		-I $TF_INC -fPIC $CXXFLAGS
fi

cd ..

#cd feature_extrapolating_layer

#nvcc -std=c++11 -c -o feature_extrapolating_op.cu.o feature_extrapolating_op_gpu.cu.cc \
#	-I $TF_INC -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC -arch=sm_50

#g++ -std=c++11 -shared -o feature_extrapolating.so feature_extrapolating_op.cc \
#	feature_extrapolating_op.cu.o -I $TF_INC -fPIC -lcudart -L $CUDA_PATH/lib64
#cd ..

然后重新在lib文件下make编译。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页