UsingAI-算法实习生(数学方向)一面面经分享(10分钟):

题目:

1.继承和封装的特性

2.Python中的多线程是真的多线程吗?是怎么实现的

3.l1和l2正则化的对比(深度,收敛速度)

4.神经网络的学习因子过大会导致什么

5.卷积神经网络的核函数是越大越好的吗

6.对于很大的数据集,怎样提高决策树的效率

7.什么是模型过拟合,又怎么处理

8.k值分类以文本分类为例的过程是怎么样的,k值怎么确定(脑子一抽没反应过来问的是K-means,用SVM分类和决策树分类代替回答)

可能还有1~2题不记得,但大致的就是以上这些回答了。

总结:

笔者是大三萌新勇闯算法实习生,通过这次面试大致了解了面试中所谓的“八股”是什么样的,既看到了自己的进步和成长,更看到了自己的不足。二面通知在3~4天或者最晚1周左右联系,祝我好运!

预告:

明天辛恩励-GPTs应用实习生

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值