牛客网-八皇后【搜就完事】

在这里插入图片描述
先来看一看洛谷的八皇后问题
在这里插入图片描述
有了这个图就显得比较清晰了,就是在8*8或者6*6的棋盘上放置8或者6个棋子,使得棋子所在行列个不相交。建议直接学数独游戏,基本上搜索难不过八数码和数独毕竟我做的题少,没遇到过 。这道题打眼一看就要来搜索,那么我们就要确定搜索的状态是什么?如何进行搜索?

如果我们使用dfs进行搜索,那么首先要保证的是条件:每行每列每条对角线都没有连个皇后,行和列还比较好处理,一旦给某个位置加上一个皇后,那么我们标记该行该列即可,比较麻烦的就是对角线的记录:

对角线的元素有如下的性质:

  • 对于一条从右上到左下的对角线,其上的棋子坐标应满足x+y为一定值;(比如1,66,1
  • 对于一条从左上到右下的对角线,其上的棋子坐标应满足x-y为一定值,为了避免负数的产生,代码中用x-y+n来储存数字,(比如1,16,6)
  • 而且上述两种方案在每条对角线上得到的值各不相同,因此可以用于标识对角线是否存在元素。

在这里插入图片描述
下面这一段搜索足够解决 n < 10 n<10 n<10的n皇后问题,如果 n > 10 n>10 n>10,则使用vector存储历史路径即可当然也有其他解决方案。

void dfs(ll x, string s) {//对第x行进行搜索
	if (x == n + 1) { res++; v.push_back(s); return; }//成功凑成n皇后
	for (int i = 1; i <= n; i++) {//尝试第一行的每个位置
		if (!row[x] && !col[i] && !eye1[x + n - i] && !eye2[x + i]) {
			row[x] = col[i] = eye1[x + n - i] = eye2[x + i] = 1; 
			s += i + '0';
			dfs(x + 1, s);//x行有了皇后 继续到下一行
			s.erase(s.end()-1);
			row[x] = col[i] = eye1[x + n - i] = eye2[x + i] = 0;//回溯
		}
	}
}

到这里这道题已经非常容易了,只需要指定n=8,然后输入b,直接输出v[b-1]即可。

//a:棋盘当前的状态  row[i]:第i行有元素  col[i]:第j列有元素
//eye1:主对角线(x+n-y定值)  eye2:次对角线(x+y定值)
ll row[MAX], col[MAX], eye1[MAX * 3], eye2[MAX * 3], n = 8, res = 0, b;
vector<string> v;

void dfs(ll x, string s) {//对第x行进行搜索
	if (x == n + 1) { res++; v.push_back(s); return; }//成功凑成n皇后
	for (int i = 1; i <= n; i++) {//尝试第一行的每个位置
		if (!row[x] && !col[i] && !eye1[x + n - i] && !eye2[x + i]) {
			row[x] = col[i] = eye1[x + n - i] = eye2[x + i] = 1; 
			s += i + '0';
			dfs(x + 1, s);//x行有了皇后 继续到下一行
			s.erase(s.end()-1);
			row[x] = col[i] = eye1[x + n - i] = eye2[x + i] = 0;//回溯
		}
	}
}

int main(){
	while (cin >> b) {
		res = 0; string s; v.clear();
		dfs(1, s);
		sort(v.begin(), v.end());
		cout << v[b - 1] << endl;
	}
}
回溯算法是一种用于解决八皇后问题的有效方法。该问题是在8×8格的国际象棋棋盘上放置8个皇后,使得它们互相之间不能攻击,即不能处于同一行、同一列或同一斜线上。 回溯算法通过递归的方式来索所有可能的解。它从第一行开始,依次尝试在每一列放置皇后,并进行递归调用,以确定下一行的皇后位置。如果在某一行放置皇后后,它与之前的皇后产生冲突(在同一列、同一行或同一斜线上),则回溯到上一行,重新选择该行的皇后位置。 这种算法的优势在于它能够通过剪枝操作来避免无效的索。当在某一行放置皇后后,发现它与之前的皇后产生冲突时,可以提前结束该分支的索,从而减少了不必要的尝试。 使用回溯算法解决八皇后问题可以得到所有合法的解。根据引用的描述,经过旋转和对称变换,共有42类不同的解。而根据引用的描述,使用回溯算法可以找到92种不同的解。 总结起来,回溯算法是一种高效解决八皇后问题的方法,它通过递归和剪枝操作来索所有合法的解。使用该算法可以找到92种不同的解。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [八皇后问题(回溯法)](https://blog.csdn.net/skill_Carney/article/details/107446299)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值