BZOJ 1878 [SDOI2009]HH的项链 题解与分析

1878: [SDOI2009]HH的项链

Time Limit: 4 Sec  Memory Limit: 64 MB
Submit: 1217  Solved: 560
[Submit][Status]

Description

HH有一串由各种漂亮的贝壳组成的项链。HH相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH不断地收集新的贝壳,因此,他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答。。。因为项链实在是太长了。于是,他只好求助睿智的你,来解决这个问题。

Input

第一行:一个整数N,表示项链的长度。第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。第三行:一个整数M,表示HH询问的个数。接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。

Output

M行,每行一个整数,依次表示询问对应的答案。

Sample Input

6
1 2 3 4 3 5
3
1 2
3 5
2 6

Sample Output

2
2
4

HINT


对于20%的数据,N ≤ 100,M ≤ 1000;
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。

Source

 
【分析】:
        因为操作中只有询问没有更新,所以可以使用离线算法,对所有问按右区间升序排序。以该数字第一次在区间中出现的点代表所有的点。如果是第一次出现,那么该数字 在之前从未出现或上一次出现不再区间内。记录每个位置i的数字的前一个相同数字出现的位置hash[i],没有前一个相同的hash[i]为0。然后从前到后扫描询问,每次将上一个同值点的值加1,然后求当前区间的左界的前缀和就是答案了。将当前位置下个位置的值减1,这样做可以保证任意一个数字在任意一段区间中最多出现一次.
【代码】:
 
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
#define MAXM 200001
#define MAXN 1000001
struct ASK{int l,r,num;};
ASK b[MAXM];
int N,M,a[MAXN],ans[MAXM],S[MAXN],hash[MAXN],last[MAXN];
bool cmp(ASK X,ASK Y){return X.r<Y.r;}
int lowbit(int x){return x&(-x);}
void add(int x,int v)
{
      while(x<=N+1)
      {
            S[x]+=v;
            x+=lowbit(x);
      }
}
int getsum(int x)
{
      int tmp=0;
      while(x>0)
      {
            tmp+=S[x];
            x-=lowbit(x);
      }
      return tmp;
}
int main()
{
      //freopen("sequence.in","r",stdin);
      //freopen("sequence.out","w",stdout);
	  scanf("%d",&N);
	  for(int i=1;i<=N;i++)
	  {
            int A;
            scanf("%d",&A);
            hash[i]=last[A]+1;
            last[A]=i;
	  }
	  scanf("%d",&M);
	  for(int i=1;i<=M;i++)
	  {
			scanf("%d%d",&b[i].l,&b[i].r);   
			b[i].num=i;
	  }
      sort(b+1,b+1+M,cmp);
      int now=1;
      for(int i=1;i<=M;i++)
      {
            while(now<=b[i].r)
            {
                  now++;
                  add(hash[now-1],1);
                  add(now,-1);
            }
            ans[b[i].num]=getsum(b[i].l);
      }
	  for(int i=1;i<=M;i++)
			printf("%d\n",ans[i]);
      //system("pause");
      return 0;
}

 
转载注明出处:http://blog.csdn.net/u011400953
阅读更多
换一批

没有更多推荐了,返回首页