【问题描述】
给出一个无向图,图的边上有权值,已知该图的最小生成树边权和为A,问有多少种方案删除图的一条边,使得新图仍然存在生成树,而且最小生成树的边权和大于A。
【输入格式】
第一行是n,表示图的顶点数目,顶点编号为1~n。
接下来是一个n*n的矩阵,矩阵的第i行的第j个整数表示顶点i与顶点j的边权值(矩阵是对称的),如果为-1,表示这两个顶点之间无边连接。
【输出格式】
一个整数,表示删除一条边的方案数。
【输入样例】
3
0 1 2
1 0 2
2 2 0
【输出样例】
1
【数据范围】
30%的数据满足:n<=200
100%的数据满足:2<=n<=1000 ,边权是不超过1000000的非负整数。
【分析】
在最小生成树的基础上,改变了一些所求,其本质还是最小生成树算法。但感觉这个题要注意的点特别多。(可能是自身漏洞太多)
1、暴力(期望30分 实际上效果还不错 80分)
先kruskal一遍,再在最小生成树上枚举每一条树边,删除(标记)掉,再在新图上kruskal一遍与A比较,最后方案数即是答案。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=1000005;
const int maxm=1000005;
int x,y,n,m,np=0,s,pa[maxn],used[maxn],vis[maxn];
struct edge{
int u,v,c;
friend bool operator<(edge a,edge b)
{
return a.c<b.c;
}
}E[maxm<<1];
vector<int>g[maxn];vector<int>w[maxn];
void init()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%d",&x);
if(j>=i) continue;
if(x!=-1)
{
E[++np]=(edge){i,j,x};
}
}
}
void initial()
{
for(int i=1;i<=np;i++) pa[i]=i;
}
int find(int x)
{
if(x==pa[x]) return x;
int root=find(pa[x]);
pa[x]=root;
return root;
}
void merge(int x,int y)
{
int px=find(x),py=find(y);
if(px!=py) pa[px]=py;
}
bool judge(int x,int y)
{
return find(x)==find(y);
}
int kruskal()
{
sort(E+1,E+1+np);
initial();
int sum=0,cnt=0;
for(int i=1;i<=np;i++)
{
int u=E[i].u,v=E[i].v,c=E[i].c;
if(vis[i]) continue;
if(judge(u,v)) continue;
merge(u,v);sum+=c;cnt++;
used[i]=1;
if(cnt==n-1) break;
}
return sum;
}
int kruskal2(int xx)
{
// sort(E+1,E+1+np); **//这里千万不能再排序 因为写的排序只有一个关键字边权c 再排序会混乱**
initial();
int sum=0,cnt=0;
for(int i=1;i<=np;i++)
{
int u=E[i].u,v=E[i].v,c=E[i].c;
if(i==xx) continue; //**标记掉的边直接忽略**
if(judge(u,v)) continue;
merge(u,v);sum+=c;cnt++;
if(cnt==n-1) break;
}
return sum;
}
int main()
{
// freopen("in.txt","r",stdin);
init();
int A=kruskal();
int ans=0;
for(int i=1;i<=np;i++)
{
int ok=0;
if(used[i])
{
int a2=kruskal2(i);
if(a2>A) ans++;
}
}
printf("%d",ans);
return 0;
}
2.删边再加边 类似于“严格次小生成树”http://blog.csdn.net/ctf109/article/details/74298119
之前跟同学讨论,我觉得这个题和本题有异曲同工之妙,都是在非树边中选择一条,放在最小生成树中,再进行下一步操作。
本题:对于每一条非树边(u,v),如果在树上路径中有边权小于(u,v)的边t,则可以删除边t,方案数++。
问题在于题目所求:“问有多少种方案删除图的一条边,使得新图仍然存在生成树,而且最小生成树的边权和大于A。”故而每条边只能算一次,即需要标记,并且枚举非树边时需要从小到大排序。(t这条边用了以后就不能再用,并且也不可能再出现)
我认为本题最恶心的点是不仅要标记边权小于(u,v)的,还应标记等于的。如果这点理解有困难,请先理解上一排的斜体字。为什么不能再出现?(回忆最小生成树的生成过程)
#include<cstdio>
#include<queue>
#include<cmath>
#include<cstring>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1000005;
const int maxm=1000005;
int x,y,d,c,a,b,n,m,pa[maxn],used[maxm],dist[maxn],fa[maxn],dep[maxn],vis[maxm];
int hash[1005][1005];
int ans=0;
int np=0,first[maxn];
vector<int>g[maxn];
vector<int>w[maxn];
struct edge
{
int u,v,c;
friend bool operator<(edge a,edge b)
{
return a.c<b.c;
}
}E[maxm<<1];
void addedge(int u,int v)
{
E[++np]=(edge){v,first[u]};
first[u]=np;
}
void initial()
{
for(int i=1;i<=np;i++) pa[i]=i;
}
int find(int x)
{
if(x==pa[x]) return x;
int root=find(pa[x]);
pa[x]=root;
return root;
}
bool judge(int x,int y)
{
return find(x)==find(y);
}
void merge(int x,int y)
{
int px=find(x),py=find(y);
if(px!=py) pa[px]=py;
}
void init()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%d",&x);
if(j>=i) continue;
if(x!=-1)
{
E[++np]=(edge){i,j,x};
}
}
}
int kruskal()
{
int cnt=0,sum=0;
initial();
sort(E+1,E+1+np);
for(int i=1;i<=np;i++)
{
int u=E[i].u,v=E[i].v;c=E[i].c;
if(judge(u,v)) continue;
g[u].push_back(v);
g[v].push_back(u);
w[u].push_back(c);
w[v].push_back(c);
used[i]=1;
merge(u,v);cnt++;sum+=c;
if(cnt==n-1) break;
}
return sum;
}
void dfs(int i,int f,int d,int t)
{
dist[i]=t;
dep[i]=d;
fa[i]=f;
int sz=g[i].size();
for(int k=0;k<sz;k++)
{
int j=g[i][k],c=w[i][k];
if(j==f) continue;
dfs(j,i,d+1,t+c);
}
}
int LCA(int u,int v,int kk)
{
if(dep[u]<dep[v]) swap(u,v);
int cnt=0;
while(dep[u]!=dep[v])
{
if(dist[u]-dist[fa[u]]<kk&&(!hash[u][fa[u]]))
{
cnt++;
}
//标记有更好的方法 这里比较愚蠢
hash[u][fa[u]]=1;hash[fa[u]][u]=1;**//全部标记**
u=fa[u];
}
while(u!=v)
{
if(dist[u]-dist[fa[u]]<kk&&(!hash[u][fa[u]]))
{
cnt++;
}
hash[u][fa[u]]=1;hash[fa[u]][u]=1;**//全部标记**
u=fa[u];
if(dist[v]-dist[fa[v]]<kk&&(!hash[v][fa[v]]))
{
cnt++;
}
hash[v][fa[v]]=1;hash[fa[v]][v]=1;**//全部标记**
v=fa[v];
}
return cnt;
}
void solve()
{
int A=kruskal();
dfs(1,0,1,0);
for(int i=1;i<=np;i++)
{
if(used[i]) continue;//枚举非树边
int u=E[i].u,v=E[i].v,c=E[i].c;
int cc=LCA(u,v,c);
ans+=cc;
}
printf("%d",ans);
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
init();
solve();
return 0;
}