Spark 计算人员二度关系

1、一度人脉:双方直接是好友
 
2、二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你。你们的关系是: 你->朋友->陌生人
 
3、三度人脉:即你朋友的朋友的朋友就是这个陌生人。你们的关系是 你->朋友->朋友->陌生人
 
4、四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人
 
5、五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就是一个五度人脉关系。
 
6、六度人脉:你->朋友->朋友->朋友->朋友->朋友->陌生人

数据格式如下:

A,B
A,C
A,E
B,D
E,D
C,F
F,G

业务逻辑如下:

1、转换操作flatMapToPair将行数据变为键值对,如A,B表示A和B认识,A可以通过B认识B的朋友,B通过A可以认识A的朋友,转化结果为{A:A,B}、{B:B,A};

2、转换操作groupByKey对键值对按Key进行分组,转化结果为:{A,【A,B A,E A,C 】}...;

3、转成操作flatMapToPair生成包含可能存在(A->B,A->C两者走向B和C不相同,B和C即存在可能)二度关系的新的键值对,如A和B认识且A与C认识,那么B与C可以存在认识关系即二度关系,路线走向为:B->A->C;

4、转成操作filter在新的键值对中筛选出一度关系即两者已经是认识的,如A和B认识是一度关系;

5、转成操作subtractByKey对包含二度关系的键值对删除存在一度关系的人员;

6、行为操作countByKey统计存在二度关系的比重;

具有实现:

package com.test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.regex.Pattern;

import org.apache.commons.lang3.StringUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

public class Test1 {

	public static void main(String[] args) {
		SparkConf conf = new SparkConf().setMaster("local").setAppName("My Test APP");
		
		JavaSparkContext sc = new JavaSparkContext(conf);
		
		JavaRDD<String> rdd = sc.textFile("C:/rmgx.txt");
		
		JavaPairRDD<String, String> r1 = rdd.flatMapToPair(new PairFlatMapFunction<String,String,String>(){
			@Override
			public Iterator<Tuple2<String, String>> call(String t)
					throws Exception {
				List<Tuple2<String, String>> list = new ArrayList(); 
				String[] eachterm = t.split(",");
				list.add(new Tuple2(eachterm[0], eachterm[0] + "," + eachterm[1]));
				list.add(new Tuple2(eachterm[1],eachterm[1] + "," + eachterm[0]));
				return list.iterator();
			}	
		});
						
		JavaPairRDD<String, Iterable<String>> r2 = r1.groupByKey();
					
		JavaPairRDD<String, String> r3 = r2.flatMapToPair(new PairFlatMapFunction<Tuple2<String,Iterable<String>>,String,String>(){
			@Override
			public Iterator<Tuple2<String, String>> call(
					Tuple2<String, Iterable<String>> t) throws Exception {
				List<Tuple2<String, String>> list = new ArrayList(); 
				for (Iterator iter = t._2.iterator(); iter.hasNext();) {
				     String str1 = (String)iter.next();
				     String str1_0 = str1.split(",")[0];
				     String str1_1 = str1.split(",")[1];
				     list.add(new Tuple2(str1_0+ "->" + str1_1,"deg1friend,"+str1_0+ "->" + str1_1));
				     for (Iterator iter2 = t._2.iterator(); iter2.hasNext();) {
				    	 String str2 = (String)iter2.next();
				    	 String str2_0 = str2.split(",")[0];
					     String str2_1 = str2.split(",")[1];
					     if(!str1_1.equals(str2_1)){
					    	 list.add(new Tuple2(str1_1+ "->" + str2_1 ,"deg2friend,"+str1_1 + "->" + str2_0 + "->" + str2_1)); 
					     }
				     }
				}
				return list.iterator();
			}
		});
		
		JavaPairRDD<String, String> r4 = r3.filter(new Function<Tuple2<String,String>,Boolean>(){
			@Override
			public Boolean call(Tuple2<String, String> v1) throws Exception {
				return v1._2.indexOf("deg1friend")>-1;
			}	
		});
		
		JavaPairRDD<String, String> r5 = r3.subtractByKey(r4);
		
		System.out.println("线路走向:"+StringUtils.join(r5.collect(), ","));
		
		Map<String, Long> r6 = r5.countByKey();
		
		System.out.println("二度关系及比重:" + r6);
	}
}

结果如下:

线路走向:(A->F,deg2friend,A->C->F),(F->A,deg2friend,F->C->A),(A->D,deg2friend,A->B->D),(A->D,deg2friend,A->E->D),(C->G,deg2friend,C->F->G),(C->E,deg2friend,C->A->E),(C->B,deg2friend,C->A->B),(G->C,deg2friend,G->F->C),(B->E,deg2friend,B->A->E),(B->E,deg2friend,B->D->E),(E->B,deg2friend,E->A->B),(E->B,deg2friend,E->D->B),(E->C,deg2friend,E->A->C),(B->C,deg2friend,B->A->C),(D->A,deg2friend,D->B->A),(D->A,deg2friend,D->E->A)
二度关系及比重:{F->A=1, C->G=1, A->D=2, B->E=2, E->B=2, C->B=1, C->E=1, B->C=1, G->C=1, D->A=2, A->F=1, E->C=1}

阅读更多
个人分类: 大数据 Spark Hadoop
所属专栏: 大数据
上一篇Hadoop MapReduce实现人员二度关系运算
下一篇Spark 计算人员三度关系
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭