HDU6397 (组合问题+容斥原理)

题意

给三个数n,m,k, 在0~n-1中选出m个数排成一排使得他们的和等于k,这m个数可以相同,只要排列不同即可。求一共有多少种排列方式是满足题意的。

分析

这里有一个简单版的题
先说下整体思路:对于没有0~n-1这个限制条件的话我们可以很快的用隔板法求出总的个数是C(m-1,k+m-1),然后可能x个数超过了n-1,那么我们减去只有1个数超过的情况,再加上超过了2个数的情况…也就是容斥原理。最后求得即可

下面说下细节问题。

  首先对于没有限制的话,为啥是C(m-1,k+m-1) 这个lrj蓝书上有讲。题意我们可以先这样理解,有k个1,要将这些个1分成m份,有顺序。这个是个高中的隔板法。如果用普通的方法会有重复,而且不好去重。如果每个数至少是一的话,我们可以看成是在k个1中间差m-1个板子,两端不能插,一共就有k-1个地方可以插,就是c(m-1,k-1)。如果每个数还可以是0,那我们可以先向k+m个数中间插m-1个板子分成m份,然后每一份都减去1,就是答案。(高中数学,应该有印象吧- -)同上,首尾不能插,所以就是C(m-1,m+k-1).(其实也可以通过杨辉三角找规律,我就是这么干的- -)
  这个问题说清楚了我们再看超过限制条件的的。如果只有c个,那么这个数x’>=n一定成立。现在我们做这样一个操作,将所有大于等于n的x全部减去n,这样问题由原来的 x 1 + x 2 + . . . x m = k x_1+x_2+...x_m=k x1+x2+...xm=k转换成了 x 1 ′ + x 2 ′ + . . x m ′ = k − n ∗ c x'_1+x'_2+..x'_m=k-n*c x1+x2+..xm=knc原来的x1…xm可能是大于等于n的,但是转化以后的x’全部是小于n的而且大于0,这个就相当于转换成了上述没有限制的一个子问题。就可以用上面说的方法求数量了。但是我们这里假设的是c个,所以还要用容斥原理。如果c是奇数,就做减法,是偶数就做加法。
  最后代码上还要说两点,一个是组合数求法。组合数用逆元的模板,时间复杂度O(n),目前还没看懂这个逆元怎么求的,反正板子贴上去就对了。第二个问题就是上面说的c,违反的个数取值是多少。一开始我当成了m,就是m个全部超了,但是程序后来崩了。后来想想发现应该是k/n,因为如果超了的话,最小也是n,所以最多只可能是k/n个数超了。

更新一下,因为有人问了,容斥的到底是什么?上文已经谈到我们现在已经可以求出没有 [ 0 , n − 1 ] [0,n-1] [0n1]这个限制的答案,但现在有这个限制,所以我们要减去超过限制的情况下多算的数量。对于选出来的m个数,其中超过上述范围的 个数 可能是1个,2个…m个。但是对于超过2个情况下的话肯定也是超过了1个的情况,对于超过3个情况下也肯定是超过了2个的。所以要用容斥原理,如果到了这一步还是不太清楚如何容斥的话, 可以先画个图理解一下。

看着学弟拿铜,我这个打铁老学长心情很复杂

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
const ll MOD = 998244353;
const ll MAXN = 2e5 + 5;
int F[MAXN], Finv[MAXN], inv[MAXN];//F是阶乘,Finv是逆元的阶乘 
void init() {
    inv[1] = 1;
    for (int i = 2; i < MAXN; i++) {
        inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
    }
    F[0] = Finv[0] = 1;
    for (int i = 1; i < MAXN; i++) {
        F[i] = F[i - 1] * 1ll * i % MOD;
        Finv[i] = Finv[i - 1] * 1ll * inv[i] % MOD;
    }
}

ll com(int n, int k) 
{
    if (n < 0 || k < 0 || k > n) return 0;
    return F[n] * 1ll * Finv[n - k] % MOD * Finv[k] % MOD;
}

int main()
{
    //freopen("a.in", "r", stdin);
    //freopen("a.outmy", "w", stdout);
    t;
    cin >> t;
    init();
    while (t--)
    {
        int n, m, k;
        cin >> n >> m >> k;
        ll ans = com(k + m - 1, m - 1);
        for (int i = 1; i * n <= k; i++)
        {
            if (i & 1) ans = (ans + MOD - (com(m, i)*com(m - 1 + k - n * i, m - 1)) % MOD) % MOD;
            else ans = (ans + (com(m, i)*com(m - 1 + k - n * i, m - 1))) % MOD;
        }
        cout << ans << endl; 
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值