c#扩展方法奇思妙用变态篇一:由Fibonacci数列引出“委托扩展”及“递推递归委托”...

先回顾一个数列的概念:按一定次序排列的一列 数 称为数列...(请参见百度百科:数列)
几个简单的数列:
      1, 1, 1, 1, 1, 1, 1...                //数列1
      0, 1, 2, 3, 4, 5, 6, 7...                //数列2
      0, 1, 4, 9, 16, 25, 36, 49...        //数列3
通项公式的定义:数列的第n项与项的序数这间的关系,也就是数列生成算法
上面几个数列可表示为
       An = F(n) = 1
       An = F(n) = n
       An = F(n) = n * n

有了数列和通项公式的定义,我们的任务就好描述了:
      用最简洁的代码描述通项公式,用最简洁算法生成数列的前N个数。

在此要求下,用常规代码是做不到简洁的,这里我们用lambda表达式描述通项公式:

         // 数列1 通项公式
         public   static  Func < int int >  fun1  =  n  =>   1 ;
        
// 数列2 通项公式
         public   static  Func < int int >  fun2  =  n  =>  n;
        
// 数列3 通项公式
         public   static  Func < int int >  fun3  =  n  =>  n  *  n;

 

lambda表达式是不是与数学公式很像啊!

再来看生成算法,这里用了一个不一般的扩展:

ExpandedBlockStart.gif          /// 
        
/// 生成队列的前count项
        
/// 
        
/// 通项公式
        
/// 生成的数量
        
/// 队列前count项

         public   static  IEnumerable < int >  GetSequence( this  Func < int int >  func,  int  count)
ExpandedBlockStart.gif        
{
            
for (int i = 0; i < count; i++yield return func(i);
        }


相信大家见的扩展大多针对类(object, string)、接口(IEnumerable)进行扩展,针对Func(委托)估计对大多数人来说都是第一次。
这个扩展就是标题中说的“委托扩展”,感觉很怪吧,很别扭吧,很别管太多,看看怎么调用吧:

         public   static   void  Test1()
        {
            
int [] ints1  =  fun1.GetSequence( 10 ).ToArray();       // 1, 1, 1, 1
             int [] ints2  =  fun2.GetSequence( 10 ).ToArray();       // 0, 1, 2, 3
             int [] ints3  =  fun3.GetSequence( 10 ).ToArray(); ;     // 0, 1, 4, 9
        }

自我感觉比较简洁,而且将生成数列(GetSequence)与数列算法(通项公式)分开,也达到了生成数列(GetSequence)的复用。

上面几个数列比较简单,现在来看Fibonacci,
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...
用图形表示如下:

这个序列在大家学习c语言递推递归时都接触过,这个序列很神奇,请参看维基百科:斐波那契数列
它的通项公式是 An = F(n) = n                          n =0, 1
                                       F(n-1) + F(n-2)      n>1
注意:关于这数列有的是从n从0开始,有的是从1开始,这里不计较。

递推递归算法如下,容易理解效率确很低!!

         public   static   int  GetFibonacci( int  n)
        {
            
if  (n  >   1 return  GetFibonacci(n  -   1 +  GetFibonacci(n  -   2 );
            
else   return  n;
        }

本文是为了引出递推递归委托,暂不是算法的效率
下面就要大(改)变(形)态了。

不考虑 <1 的情况

         public   static  Func < int int >  Fibonacci  =  n  =>  Fibonacci(n  -   1 +  Fibonacci(n  -   2 );

与数学通项式对比一下,何其相似!这就是我们的“递推递归委托”!

考虑所有情况,完成Fibonacci,如下

         public   static  Func < int int >  Fibonacci  =  n  =>  n  >   1   ?  Fibonacci(n  -   1 +  Fibonacci(n  -   2 ) : n;

实在感叹c#精简的语法,一句代码可以表示一个递推递归!
调用测试下吧!

         public   static   void  Test2()
        {  
            
// 委托扩展方法 + 递推递归委托
             int [] fibonacciSequence  =  Fibonacci.GetSequence( 12 ).ToArray();
        }

当然这个生成算法效率不是一般的低!

最后给出一个数学推导出的精确算法

         public   static  Func < int int >  Fibonacci2  =  n  =>  ( int )( 5.0 .Pow( - 0.5 *  (( 0.5   *  ( 1   +   5.0 .Pow( 0.5 ))).Pow(n  +   1 -  ( 0.5   *  ( 1   -   5.0 .Pow( 0.5 ))).Pow(n  +   1 )));
        
// Pow扩展,简化调用
         public   static   double  Pow( this   double  x,  double  y)
        {
            
return  Math.Pow(x, y);
        }


一点意见:像这样代码,最好是给封装起来,否则会很麻烦的。
这篇文章是给极少数人看的(启发一下),看完后封装好给大多数人用。这是也“变态篇”系列文章的宗旨.
希望大家对 “委托扩展” 和 “递推递归委托”提些看法,名字定义不太好,请指正!

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/12639172/viewspace-611753/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/12639172/viewspace-611753/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值