用 ASP.NET Callback 和 JavaScript 高速访问数据库

通过ASP.NET的ClientCallback技术,能够实现实时的JavaScript与.NET之间的通信,以接近原生JavaScript的速度提升Web应用性能。该技术相比UpdatePanel控件,具有更快的响应速度和更小的数据传输量。

透过 ASP.NET 的 Client Callback 技术,可让 JavaScript. 和 .NET 直接作沟通,并以远远远远快于 UpdatePanel 控件的速度,高速执行 Web 应用程序。本帖提供一个 ASP.NET Callback 的示例下载,仅用极少的代码,实现类似 Google 的实时关键词查询,且性能超优,程序的响应速度有如 JavaScript. 般地快速。


看到本帖的摘要,您可能会觉得 Callback 技术相当惊人,确实,其数据传输量、执行速度,都远远比 ASP.NET AJAX 的 UpdatePanel 控件要优秀。若您用一些网络监控工具观察 ,会看到在许多情况下,Callback 在网络中传送的数据量,甚至比 UpdatePanel 控件要少了数十倍甚至上百倍。

但 Callback 是 ASP.NET 2.0 就已推出的旧技术,甚至可说它只是在微软 AJAX Framework 出来前的一套过渡技术。其功能及函数极有限,因此并不适合开发较复杂的应用。因此就开发方便性而言,其远不如 ASP.NET AJAX 控件,以及 UpdatePanel 控件来得方便。但不可否认的,在某些应用较单纯,且需要高性能、快速响应的页面,Callback 仍是相当不错的选择。

本帖提供两个简易示例下载,第一个示例,可在 TextBox 的 OnBlur、OnKeyup 等 JavaScript. 事件被触发时,查询 SQL Server,且 Onkeyup 可达成如同 Google 般的实时 key-in 查询效果;第二个示例,则改成透过 Button Click 才会查询数据库。

-------------------------------------------------
本帖的示例代码下载点:
http://files.cnblogs.com/WizardWu/090208.zip

(执行本示例,需要 SQL Server 的 Northwind 数据库,以及 IIS 或 VS 2008)
-------------------------------------------------

 

2009020803575611.jpg
图 1 一离开 TextBox 时 (OnBlur),会用极快的速度查询数据库

 

如同版工在之前的「网站性能越来越差怎么办? 」一文,以及下面这篇文章所提到的:

UpdatePanel 提示和技巧 (MSDN Magazine, 2007/6):
http://msdn.microsoft.com/zh-cn/magazine/cc163413.aspx


微软为了达成 AJAX 的使用方便性,而牺牲了许多性能,让 UpdatePanel 控件运作得相关没有效率,因其用 ViewState 保存了大量的页面状态。反观 Callback 技术虽然速度快 ,网络传输量远比 UpdatePanel 控件少,但其缺点为功能过于阳春、开发不便;且版工我还发现一个缺点,就是在其 RaiseCallbackEvent 方法中,会让 Response.Write、 JavaScript. 的 alert 失效,导致捕捉到的错误信息,无法显示在页面上让程序员和用户知道。

另听说在 ASP.NET 4.0 时,UpdatePanel 控件的 Render 方式会有新的改进,可以只 Render 特定的页面字段值,会比 Partial Rendering 聚焦到更小的区块。在这之前,若您的页面需要以特优的性能实现简单的功能,如本帖的示例,Callback 仍是个不错的选择。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/12639172/viewspace-545678/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/12639172/viewspace-545678/

【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的一本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行高效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为一款功能强大且开源的统计计算图形处理平台,R语言凭借其丰富的工具库社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言提供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并提升数据分析能力。此外,书中配套的“案例数据集”“代码资源”为读者提供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是一部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
内容概要:本文提出了一种基于改进粒子滤波算法的无人机三维航迹预测方法,并通过Matlab代码实现仿真验证。该方法针对传统粒子滤波在无人机轨迹预测中存在的粒子退化计算复杂度高等问题,引入优化策略提升滤波精度与效率,有效提高了对无人机运动轨迹的非线性、非高斯环境下的预测能力。文中详细阐述了算法原理、模型构建流程及关键步骤,包括状态转移建模、观测方程设计、重采样优化等,并结合三维空间中的实际飞行轨迹进行仿真实验,验证了所提方法相较于标准粒子滤波在位置预测误差收敛速度方面的优越性。; 适合人群:具备一定信号处理、导航估计算法基础,熟悉Matlab编程,从事无人系统、智能交通、航空航天等相关领域研究的研究生或科研人员; 使用场景及目标:①应用于无人机实时轨迹预测与状态估计系统中,提升飞行安全性与自主性;②为复杂环境下非线性动态系统的建模与滤波算法研究提供技术参考;③【预测】改进粒子滤波的无人机三维航迹预测方法(Matlab代码实现)支持后续扩展至多无人机协同跟踪与避障系统的设计与仿真; 阅读建议:建议结合Matlab代码逐模块分析算法实现细节,重点关注粒子滤波的改进机制与三维可视化结果对比,同时可尝试替换不同运动模型或噪声条件以深入理解算法鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值