模具制造厂APS的设计与实现 ----开题报告初稿一 课题的研究背景 全球化竞争使得精确的计划,短的周期,可预计的交货等需求越来越重要,使得计划与排程提升到极为重要的地位. 无限能力计划无法回答真实复杂的世界。在剧烈变化的市场竞争中,将需要企业实施具有能力产生的精确管理和满意的计划的生产管理系统。 APS(Advanced Planning and Scheduling )的工厂计划解决方案提供智能决策支持,对主生产计划和排程,物料和能力需求计划,动态有限排程和CTP承诺交货期。主要目的是通过减少制造提前期,增加交货表现和减少在制品来提高赢利性。 另外,也可以快速响应客户需求和资源状态和物料可用的变化。有效的同步生产计划和排程。 APS考虑不同行业的解决方案。APS的主要着眼点是工序逻辑约束和资源能力约束,物料和工序流程紧密联结.各种优化规则.计算最早可能开始时间和最迟可能开始时间.物料可重分配和可替代,资源可重分配和可替代.计划排程考虑柔性(缓冲),考虑成本约束,考虑非确定流程和统计概率论.考虑多种优化方案的比较分析. 因此在竞争日趋激烈的制造业,尤其是对于生产电子产品模具的制造业来说,对于需要给客户提供, 减少延迟发运,最大化交货表现,最小化再制品,最小化平均产出时间,这就使得APS的实现越发迫切和必要。 二 课题研究的条件 XXX产品事业处是以模具为产品,集模具设计与制造与一体的模具制造厂。随着客户及订单的陆续增多所产生的复杂排程问题,需以系统来解决过去手工排配已无法应付的状况,同时需要一个模拟预估的系统,可以在客户下单时能预估模具生产的大日程,用以判断最快交期或最小提前期。 同时XXX产品事业处有完善的ERP系统与运行5年并不断改善的MES系统,可以为实时计划就是在接受到信号到下一计划决策或执行的时间为0.实时计划因此依赖响应反馈技术.在大部分的生产计划系统里,数据反馈较慢,导致实时计划无法实现.很多供应商都用实时来描述自己的软件三 课题研究要解决的问题 1模具厂的APS系统的建模。建模对计算机来说是描述商业业务包括加工过程,约束的规则,策略,可替换性等的一种有效的方法.可以理解为,如果模型不能精确的描述现实,就不能有效的解决现时的问题.为了提供好的方案,就必需有一个精确的模型。 APS的主要着眼点是工序逻辑约束和资源能力约束,物料和工序流程紧密联结.各种优化规则.计算最早可能开始时间和最迟可能开始时间.物料可重分配和可替代,资源可重分配和可替代.计划排程考虑柔性(缓冲),考虑成本约束,考虑非确定流程和统计概率论.考虑多种优化方案的比较分析如果你的生产模式包括1,可替换的工艺路径,可替换的物料清单,配方;批式,连续生产;平行生产,运输的约束;库存的约束;副产品;联产品,循环使用的物料,储存的有效期,批号的处理,复杂换装.你就可能需要考虑APS的解决方案. 四 课题研究的主要目标,内容,创新之处目标是: 1,用APS引擎产生每个物料的需求。 2,问题物料和受到影响的客户订单和预测单的监控。 3,执行库存重分配和解决例外情况。 4,评估不同情况的模拟和检查计划的可行性。 5,定义约束资源和平衡工厂负荷。 6,为计划的获得优化的工作顺序。 7,为客户订单获得交货期,同时考虑物料和能力约束。 8,也提供杰出的手工交互能力如手工重排计划,手工平衡或手工在一个资源的工作的排序。 1, 实时的决策反应车间的变化. 2, 实时的决策反应供应链的变化3, 精确的交付地及交付日期.4, 提高客户服务5,减少单个企业与供应链运作成本. 研究内容 1.模型 APS为制造业的四类制造模型提供解决方案: 1,流程式模型,APS主要是顺序优化问题. 2,离散式模型,APS主要是解决多工序,多资源的优化调度问题. 3,流程和离散的混合模型. APS同时解决顺序和调度的优化问题. 4,项目管理模型,APS主要解决关键路径和成本时间最小化问题. 可视化建模语言? 答:描述复杂模型的最容易,最自然的方法是图形.这就是可视化建模语言(VML),一套图形工具可以描述加工过程,替换,生产流程和其它相关的约束 2算法 4,概论是:是用系统的方法,在业务约束基础上,来改善计划或排程. 优化的主要算法有: (1),数学规划(线性和混合整数规划),较适用于战略计划如网络选址,寻源等. (2),启发式算法(约束理论或模拟仿真等),较适用于战术计划或运作计划如生产排程等. (3),基因算法,较适用于有大量的可能方案选择. (4,)穷举法是在所有替代的可能的方案寻找,较适用于教简单的供应链. 因算法是一种生物进化的算法,实际上是一种多目标的探索法.能够用于计划与排程.它是非常新的技术,目前,还没有在商业中实际运用. 采用生物基因技术高级算法,处理日益复杂的现实世界,也是人工智能上,高级约束算法上的挑战. 基因算法是一种搜索技术,它的目标是寻找最好的解决方案。这种搜索技术是一种优化组合,它以模仿生物进化过程为基础。基因算法的基本思想是,进化就是选择了最优种类。基因算法将应用APS上,以获得“最优”的解决方案。五 本课题的进度计划 1、2008年2月——5月为准备阶段 相关资料的搜集与整理,并对相关基础知识进行深入学习。 2、2008年6月——2008年8月为研究阶段 3、2008年9月——2008年12月为建模阶段 4.2009年1月——2009年6月算法研究阶段 5.2009年7月——2009年9月系统实施阶段 5.2009年10月——2009年11月总结及论文编写
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/97456/viewspace-310415/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/97456/viewspace-310415/